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1 REVIEW OF BASIC COMPLEX ANALYSIS 1

1 Review of basic complex analysis 1

1.1 Complex differentiability

Definition 1.1 Suppose Ω ⊆ C is open. Then a function f : Ω → C is complex differentiable at z ∈ Ω if the
limit

lim
h→0

f(z + h) − f(z)
h

(1.1.1)

exists. We denote the the limit by f ′(z) and call it the derivative of f at z.

Notation We will sometimes view Ω as a subset of R2 instead of C, i.e. we consider (x, y) ∈ R2 : x+ iy ∈ Ω.
We may also decompose f into real and imaginary parts:

f(x+ iy) = f(x, y) = u(x, y) + iv(x, y)

For u, v : Ω → R.

If the corresponding function F : Ω → R2 defined by

F (x, y) :=
(
u(x, y), v(x, y)

)
is differentiable in the sense of multivariable calculus, we call F real differentiable. Complex differentiability is a
stronger condition than real differentiability. In fact, it is equivalent to real differentiability with the extra condition
that

f ′(z) = ∂f

∂x
= −i

∂f

∂y
(1.1.2)

which are the Cauchy-Riemann equations.

Definition We define the Wirtinger derivatives of f

fz := ∂f

∂z
:= 1

2

(
∂f

∂x
+ i

∂f

∂y

)
(1.1.3)

and
fz := ∂f

∂z
:= 1

2

(
∂f

∂x
− i

∂f

∂y

)
(1.1.4)

which make sense at any point where f is real differentiable.

Thus the C.R. equations can be written as
fz = 0. (1.1.5)

If f is complex differentiable we find that fz = 1
2

(
∂f
∂x − i∂f∂y

)
= ∂f

∂x = −i∂f∂y = f ′(z), such that

fz = 0 and f ′(z) = fz. (1.1.6)

Remark 1.1 Let’s rewrite the C.R. equations as

i
∂f

∂x
= ∂f

∂y
. (1.1.7)

By definition ∂f
∂x is the velocity vector of the path x 7→ f(x + iy) and ∂f

∂y is the velocity vector of the path
y 7→ f(x+ iy). They are related by a factor of i which geometrically corresponds to an anti-clockwise rotation
by 90 degrees.

Remark 1.2 At a point z where f is complex differentiable, the derivative of F is a linear map from R2 → R2

that is a rotation and dilation. In complex notation, this linear map is given by w → f ′(z)w. It preserves
orthogonality and is invertible, provided f ′(z) ̸= 0.

Definition 1.2 Suppose Ω ⊆ C is open. Then a function f : Ω → C is holomorphic if it is complex differ-
entiable at every point z ∈ Ω. In the case that Ω = C, we say that f is entire.

1



2 MÖBIUS TRANSFORMATIONS

Being holomorphic is a much stronger condition than being merely continuously differentiable from R2 to R2. As an
example, there are many continuously differentiable functions from R2 to R2 that are ‘real valued’ in that they map
into R × {0}, but the only ones of these that come from holomorphic functions are the constant functions.

Generally, a function or map preserving angles is called conformal. We will settle on a precise definition of ‘conformal’
that is adapted to this course in Section 2.9.

1.2 Product and chain rules

By the product rule we have

(f · g)z = f · gz + fz · g and (f · g)z = f · gz + fz · g. (1.2.1)

If f and g are both complex differentiable so is (f · g), and

(f · g)′ = f · g′ + f ′ · g. (1.2.2)

Lemma 1.1 Suppose f : Ω → C, for Ω ⊆ C open, and γ : I → Ω, for I ⊆ R some open interval. If γ is
differentiable at t ∈ I and f is real differentiable at γ(t), then f ◦ γ : I → C is differentiable at t and

(f ◦ γ)′(t) = fz
(
γ(t)

)
γ′(t) + fz

(
γ(t)

)
γ′(t). (1.2.3)

If f is complex differentiable at γ(t) then

(f ◦ γ)′(t) = f ′(γ(t)
)
γ′(t). (1.2.4)

Proof If we write γ(t) = u(t) + iv(t), then

(f ◦ γ)′(t) = fx
(
γ(t)

)
u′(t) + f ′(γ(t)

)
v′(t)

It can easily be shown that this is equal to (1.2.3). ■

Lemma 1.2 Suppose that Ω1,Ω2 ⊆ C are open sets. If g : Ω1 → Ω2 is real differentiable at z ∈ Ω1, and
f : Ω2 → C is complex differentiable at g(z), then f ◦ g is real differentiable at z, and we have the two chain
rules

(f ◦ g)z(z) = f ′(g(z)
)
gz(z), (1.2.5)

and
(f ◦ g)z(z) = f ′(g(z)

)
gz(z). (1.2.6)

If g is also complex differentiable at z, then f ◦ g is complex differentiable at z, and we have the chain rule

(f ◦ g)′(z) = f ′(g(z)
)
g′(z). (1.2.7)

2 Möbius transformations

2.1 Riemann sphere

We extend the complex plane by adding a point at infinity C∞ := C ∪ {∞}. We can equip this extended complex
plane with a topology: a sequence zi ∈ C ⊂ C∞ converges to ∞ ∈ C∞ if and only if zi → ∞ in the usual sense.

We would like to give C∞ enough geometric structure so that it makes sense to talk about a function being complex
differentiable at ∞ and at points that map to ∞. To do this we consider stereographic projection, which will turn C∞
into the Riemann sphere.

2.2 Stereographic projection

We want to find a correspondence between C and S2 \N , where

S2 :=
{

(x1, x2, x3) : x1
2 + x2

2 + x3
2 = 1

}
⊂ R3

2



2 MÖBIUS TRANSFORMATIONS

and N := (0, 0, 1) is the ‘north pole’. We do this by mapping each point (x1, x2, x3) on the unit sphere, other than
N , to the unique point on the plane that is on the line through N and (x1, x2, x3), and mapping infinity to the north
pole.

{x3 = 0} ≃ C

π(x1, x2, x3)

(x1, x2, x3)

N = (0, 0, 1)

Definition 2.1 We define stereographic projection π : S2 \N → C by

π(x1, x2, x3) = x1 + ix2
1 − x3

. (2.2.1)

It extends to a bijection π : S2 7→ C∞ by sending N ∈ S2 to ∞ ∈ C∞. The inverse of π can be computed to be
the map π−1 : C → S2 \N given by

π−1(x+ iy) =
(

2x
1 + |z|2

,
2y

1 + |z|2
,

|z|2 − 1
1 + |z|2

)
(2.2.2)

Warning Remember, z = x+ iy.

The bijection π : S2 7→ C∞ can be used to transfer the standard topology on S2 to a topology on C∞; this coincides
with the topology we alluded to in Section 2.1. With this topology in hand we can say, for example, that the function
z 7→ 1/z is a homeomorphism C∞ → C∞, without worrying about any singularity at 0 (now mapped to the point ∞
in the target C∞) and without worrying about the function omitting 0 in the range (now ∞ in the domain is mapped
to 0). In fact, the function z 7→ 1/z corresponds to a rotation of the sphere by 180◦.

Remark 2.1 π maps circles in S2 to circles/lines in C. More precisely circles that pass through N are mapped
to circles, otherwise they are mapped to lines. The inverse correspondence holds for π−1.

Definition 2.2 A circle in C is any subset of C that arises as the image under π of the intersection of S2

with any plane that intersects the open unit ball in R3. In other words, it is either a circle in C or a line in C
together with the point ∞ ∈ C∞.

2.3 Möbius transformations

Definition 2.3 Möbius transformations are homeomorphisms f : C∞ → C∞ of the form

f(z) = az + b

cz + d
,

for a, b, c, d ∈ C such that ad− bc ̸= 0. This restriction is to ensure that f does not map to a single point and
that they are invertible.

Lemma 2.1 The Möbius transformation in Definition 2.3 is invertible, and the inverse is also a mobius
transformation given by

f−1(z) = dz − b

−cz + a
. (2.3.1)

3



2 MÖBIUS TRANSFORMATIONS

Lemma 2.2 Let f1, f2 be Möbius transformations given by

fi = aiz + bi
ciz + di

i = 1, 2.

Then f1 ◦ f2 is again a Möbius transformation and is given by

f1 ◦ f2(z) = (a1a2 + b1c2)z + (a1b2 + b1d2)
(c1a2 + d1c2)z + (c1b2 + d1d2) . (2.3.2)

2.4 PSL(2, C)

Consider the map from GL(2,C), i.e. the group of invertible 2 × 2 matrices with complex entries, to the set of Möbius
transformations, given by

M =
(
a b
c d

)
7−→ fM (z) := az + b

cz + d
. (2.4.1)

Note The assumption ad− bc ̸= 0 in the definition of Möbius transformation is precisely the condition that
the matrix on the left-hand side of (2.4.1) is invertible.

Suppose M1,M2 ∈ GL(2,C) are defined as

Mi :=
(
ai bi
ci di

)
where i = 1, 2

then because the product has determinant det(M1,M2) = det(M1) det(M2) ̸= 0, it also lies in GL(2,C) and thus gives
rise to a Möbius transformation fM1M2 . We can calculate

M1M2 =
(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
,

and so the Möbius transformation fM1M2 is exactly f1 ◦ f2, which proves Lemma 2.2.

Notation We may also write the composition of Möbius transformations as

fM1 ◦ fM2 = fM1M2 . (2.4.2)

It is now clear from (2.4.2) where the formula for f−1(z) in Lemma 2.2 comes from(
a b
c d

)−1
= 1
ad− bc

(
d −b
c a

)
.

The map in (2.4.1) is a group homomorphism but not a group isomorphism because it isn’t injective: for any M ∈
GL(2,C) and λ ∈ C \ {0}, λM ∈ GL(2,C) will give the same Möbius transformation under (2.4.1). If we restrict
ourselves to SL(2,C), where det(M) = 1, then we still have the issue that −M ∈ SL(2,C) gives the same Möbius
transformation.

Note det(λM) = λ2 det(M).

Thus, we can turn this homomorphism into an isomorphism by factoring out the kernel {±I} and considering the
quotient group

PSL(2,C) := SL(2,C)/{±I},

where the P stands for projective.

Lemma 2.3 The map from PSL(2,C) to the group of Möbius transformations induced by (2.4.1) is a group
isomorphism by the first isomorphism theorem.

4



2 MÖBIUS TRANSFORMATIONS

2.5 Decomposition of Möbius transformations

Definition 2.4 (Elementary transformations)

(i) Translations: f(z) = z + b where b ∈ C. These maps shift a point z by the complex number b.

(ii) Rotations: f(z) = eiθz where θ ∈ R. These maps correspond to an anti-clockwise rotation about the
origin by an angle θ.

(iii) Dilations: f(z) = λz where λ > 0. These maps act as an expansion when λ > 1 and contraction when
λ < 1.

(iv) Complex inversion: f(z) = 1/z. The effect of this map can be understood as a map from S2 to S2 using
stereographic projection. In that viewpoint, it is a rotation by 180◦ about the x1-axis in R3. In other
words, the map (x1, x2, x3) 7→ (x1,−x2,−x3).

To show this, we first note that z 7→ 1/z in coordinates is x + iy 7→ x−iy
x2+y2 and that for (x1, x2, x2) ∈ S2, x2

1 + x2
2 =

1 − x2
3 = (1 − x3)(1 + x3). Then

(x1, x2, x3) π7−→ x1 + ix2
1 − x3

z 7→1/z7−−−−→ (1 − x3)x1 − ix2
x2

1 + x2
2

π−1
7−−→ (x1,−x2,−x3).

Lemma 2.4 Every Möbius transformation can be expressed as the composition of elementary Möbius trans-
formations.

Proof For c = 0 the Möbius transformation would be z 7→ az + b/d, which can be decomposed into elementary
transformations

z 7→ az 7→ az + b 7→ az + b

d
.

For c ̸= 0 we can rewrite
az + b

cz + d
as a

c
+
b− ad

c

cz + d

which can be decomposed as follows

z 7→ cz 7→ cz + d 7→ 1
cz + d

7→
b− ad

c

cz + d
7→ a

c
+
b− ad

c

cz + d
. (2.5.1)

■

Theorem 2.1 The image of every circle in C∞ under any Möbius transformation is also a circle in C∞.

Proof Using Lemma 2.4 we can consider the effect of different elementary transformations on circles in C∞.
Circles are clearly preserved under translations, rotations and dilations. The property for complex inversion
follows from its interpretation as a 180◦ rotation, together with the preservation of circles/lines by stereographic
projection given in Remark 2.1. ■

2.6 Three points to determine a Möbius transformation

Theorem 2.2 Given three distinct points z1, z2, z3 ∈ C∞ and another three distinct points w1, w2, w3 ∈ C∞,
there exists a unique Möbius transformation f such that f(zi) = wi for i = 1, 2, 3.

The proof of Theorem 2.2 is given after the following sub-results.

Lemma 2.5 Every Möbius transformation f : C∞ → C∞ other than the identity f(z) = z has at least one,
but at most two, fixed points. In particular, if f is a Möbius transformation and z1, z2, z3 ∈ C∞ are distinct
points such that f(zi) = zi, then f is the identity.

Note For a Möbius transformation such as f(z) = z + 1, ∞ is a fixed point.

5



2 MÖBIUS TRANSFORMATIONS

Proof As usual, we write f(z) = az+c
cz+d . We assume f is not the identity, where the identity corresponds to

the case a = d ̸= 0 and b = c = 0.

First we consider the case c = 0, then f = a
dz + b

d , which has a fixed point at ∞ and a second fixed point at
z = b

d−a if a ̸= d.

If c ̸= 0

f(z) = z ⇒ (az + b) = (cz + d)z
⇒ cz2 + (d− a)z − b = 0

which provides one or two distinct solutions. ■

Proposition 2.1 Given three distinct points z1, z2, z3 ∈ C∞, there exists a Möbius transformation f that maps
z1, z2, z3 to 1, 0,∞ respectively. In the case that zi ̸= ∞ for i = 1, 2, 3, then it is

f(z) := (z − z2)(z1 − z3)
(z − z3)(z1 − z2) . (2.6.1)

In the case that z1 = ∞, we set
f(z) = z − z2

z − z3
, (2.6.2)

if z2 = ∞, we set
f(z) = z1 − z3

z − z3
, (2.6.3)

if z3 = ∞, we set
f(z) = z − z2

z1 − z2
. (2.6.4)

Proof By inspection, we find that these Möbius transformations map zi to the required image points. ■

Proof of Theorem 2.2

Existence: Let f1 be the function from Proposition 2.1 that sends z1, z2, z3 to 1, 0,∞ respectively. Let f2 be
the function from Proposition 2.1 that sends w1, w2, w3 to 1, 0,∞ respectively. The Möbius transformation f
we seek is simply f−1

2 ◦ f1.

Uniqueness: Suppose that we have two Möbius transformations f and g, both of which send the points zi to
wi respectively. Then g−1 ◦ f is a Möbius transformation that has all three distinct points zi as fixed points.
Lemma 2.5 then tells us that g−1 ◦ f is the identity, i.e. f ≡ g. ■

2.7 Examples and special classes of Möbius transformations

Definition (Open unit disc) D := {z ∈ C : |z| < 1}.

Definition (Upper half-space) H+ := {z ∈ C : Im(z) > 0}.

Example 2.1 (The Cayley transform) A Möbius transformation that gives a bijection from H+ to D given by

f(z) = z − i
z + i

.

Proof f(z) ∈ D ⇔ f(z) < 1 ⇔ |z − i| < |z + i| ⇔ z ∈ H+ ■

Example 2.2 (Möbius transformation that gives a bijection from D to H+) Since Möbius transformations are
homeomorphisms from C∞ to itself, f will map the boundary of D, i.e. the unit circle, to the boundary of H+,
i.e. the real axis plus ∞. By Theorem 2.2 we can pick any three points on ∂D, e.g. 1,−i, i and map them to
1, 0,∞ respectively. In this case the map would be given by (2.6.1) as

f(z) = z + i
iz + 1 .
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Proof By Theorem 2.1, f will map ∂D to R ∪ {∞}. f is a homeomorphism, therefore it must send the disc
D either to the upper half-plane H+, or the lower half-plane H−. Since it sends 0 to i, it must be the former
case, as required. ■

Example 2.3 (Möbius transformations that give bijections from D to D) Consider

f(z) = z − w

wz − 1 for w ∈ C, with |w| < 1. (2.7.1)

Proof Observe the identity
|z − w|2 = |wz − 1|2 − (1 − |z|2)(1 − |w|2)

and use it to compute

|f(z)|2 = |z − w|2

|wz − 1|2
= 1 − (1 − |z|2)(1 − |w|2)

|wz − 1|2
.

Because we are assuming that 1 − |w|2 > 0, we see that |f(z)| < 1 if and only if |z| < 1, and |f(z)| = 1 if and
only if |z| = 1. Surjectivity follows from f−1 = f . ■

Remark 2.2 We can generalise the class of Möbius transformations from Example 2.3, by composing with a
rotation about the origin

f(z) = eiθ z − w

wz − 1 with w ∈ D and θ ∈ (−π, π]. (2.7.2)

In fact, every holomorphic map D 7→ D is of the form (2.7.2).

Example 2.4 (Möbius transformations that give bijections from H+ to H+) A Möbius transformation g : D → D
can be converted into a Möbius transformation h := H+ → H+, defined as h := f−1 ◦ g ◦ f , where f : D → H+
is the Cayley transform from Example 2.1.

Consider the subgroup PSL(2,R) := SL(2,R)/{±I}, which is the restriction of PSL(2,C), defined in Sec-
tion 2.4, to real matrices. We claim that this subgroup of Möbius transformations map H+ → H+ bijectively.

Proof Bearing in mind that a, b, c, d ∈ R, we rewrite

f(z) = az + b

cz + d
= (az + b)(cz + d)

(cz + d)(cz + d) = ac |z|2 + adz + bcz + bd

|cz + d|2
.

Therefore
Im
(
f(z)

)
= Im(adz + bcz)

|cz + d|2
= (ad− bc) Im(z)

|cz + d|2
= Im(z)

|cz + d|2
,

which implies that Im(z) > 0 ⇔ Im
(
f(z)

)
> 0 or equivalently z ∈ H+ ⇔ f(z) ∈ H+. To show that f is

bijective, one can verify that f−1 is also an element of PSL(2,R), and thus mapping H+ → H+.

In fact, every Möbius transformation that maps H+ → H+ bijectively is of this form. ■

2.8 Conformal maps

What is the right notion of equivalence for domains in C?

Note By domain here we mean a nonempty, open and connected subset.

Definition 2.5 (Conformal map) Given an open set Ω ⊆ C, a function f : Ω → C is said to be a conformal
map, if f is holomorphic and f ′(z) ̸= 0 for all z ∈ Ω.

Note f is not necessarily injective. Consider the function f : C \ {0} → C defined as f(z) = z2.

Definition 2.6 (Biholomorphic) A function f : Ω1 → Ω2 where Ω1,Ω2 ∈ C, is said to be biholomorphic if it
is a bijection such that both f and f−1 are conformal maps.

In fact, any bijective holomorphic function f : Ω1 → Ω2 is automatically biholomorphic, as we will see later.
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3 REVIEW OF BASIC COMPLEX ANALYSIS 2

Definition 2.7 (Conformally equivalent) Two domains Ω1,Ω2 ∈ C are said to be conformally equivalent if
there exists a biholomorphic function φ : Ω1 → Ω2.

If Ω1 and Ω2 are conformally equivalent via φ : Ω1 → Ω2, and Ω2 and Ω3 are conformally equivalent via ψ : Ω2 → Ω3,
then Ω1 and Ω3 are conformally equivalent via ψ ◦ φ : Ω1 → Ω3.

Which domains are conformally equivalent to the unit disc D.

Example 2.5 We claim that the upper right quarter of the complex plane

Q := {z ∈ C : Re(z) > 0 and Im(z) > 0}

is conformally equivalent to D.

Proof Q is conformally equivalent to the upper half plane H+ via the map z 7→ z2, which is biholomorphic
from Q to the upper half plane. The upper half plane is then conformally equivalent to D via the Cayley
transform of Example 2.1. ■

Example 2.6 We claim that the upper half disc

D+ := {z ∈ C : |z| < 1 and Im(z) > 0}

is conformally equivalent to the whole disc D.

Proof

Warning We cannot use the map z 7→ z2 as this show that D+ is conformally equivalent to D \ [0, 1)

Instead we show that D+ is conformally equivalent to Q. See the lecture notes... ■

Example 2.7 (Domains not conformally equivalent to D)

1. Ω = C If we could find a biholomorphic function from C to D, then this would be a bounded holomorphic
function on C, and therefore constant by Liouville’s theorem, i.e. not surjective.

2. Ω = {z ∈ C : a < |z| < b}, where 0 < a < b < ∞. This domain is not even homeomorphic to D

Definition 2.8 (Homotopic) Two paths γ1, γ2 : [a, b] → Ω are said to be homotopic if there exists a continuous
map h : [0, 1] × [a, b] → Ω such that h(0, t) = γ1(t) and h(1, t) = γ2(t) for all t ∈ [a, b], i.e. the paths interpolate
between γ1 and γ2. They must also have the same endpoints.

Definition 2.9 (Closed path) A path γ : [a, b] → Ω is closed if γ(a) = γ(b).

Definition 2.10 (Simply connected) An open set Ω ⊆ C is said to be simply connected if it is connected
and every closed continuous path γ : [a, b] → Ω is homotopic to the constant path γ̃ : [a, b] → Ω defined by
γ̃(t) = γ(a) = γ(b).

3 Review of basic complex analysis 2

3.1 Power series

We consider power series of the form
∑∞
n=0 anz

n.

Theorem 3.1 Given a complex-valued sequence (an), define the so-called radius of convergence by

R := 1
lim sup |an|1/n

∈ [0,∞].

Then the power series
∑∞
n=0 anz

n converges pointwise for all |z| < R and diverges for all |z| > R.
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Theorem 3.2 If the radius of convergence of a power series f(z) =
∑∞
n=0 anz

n is R ∈ (0,∞], then within the
open ball BR := {z ∈ C : |z| < R}, f is holomorphic and

f ′(z) =
∞∑
n=1

nanz
n−1

with radius of convergence R.

Corollary 3.1 If the radius of convergence of a power series f(z) =
∑∞
n=0 anz

n is R ∈ (0,∞], then within the
open ball BR := {z ∈ C : |z| < R}, f is infinitely differentiable and

f (n)(0) = ann!. (3.1.1)

Theorem 3.3 If the radius of convergence of a power series f(z) =
∑∞
n=0 anz

n is R ∈ (0,∞], then for all
r ∈ (0, R), the convergence

k∑
n=0

anz
n →

∞∑
n=0

anz
n

is uniform within Br as k → ∞.

3.2 Definitions of exp(z), sin(z), cos(z), sinh(z) and cosh(z)

Definition 3.1 We define exp : C → C or z 7→ ez by

ez :=
∞∑
n=0

zn

n! .

The radius of convergence is R = ∞.

If we differentiate term by term we obtain the property (ez)′ = ez.

Lemma 3.1 For all a, b ∈ C, we have
ea+b = eaeb. (3.2.1)

Proof Consider the function f(z) := ea+b−zez. The derivative is given by

f ′(z) = ea+b−z(ez)′ + (ea+b−z)′ez

= ea+b−zez − ea+b−zez = 0.

Therefore, f is constant by Exercise 1.3 and ea+b = f(0) = f(b) = eaeb. ■

Definition 3.2 We define the entire functions

sinh(z) := ez − e−z

2 and cosh(z) := ez + e−z

2 ,

as well as
sin(z) := eiz − e−iz

2i
and cos(z) := eiz + e−iz

2 .

3.3 Argument and logarithm

If we write z = reiθ, then arg(z) = θ which takes values in R/2πZ. Generally we take a branch cut by removing some
ray {reiθ : r > 0}. It can be shown to have the property arg(zw) = arg(z) + arg(w).

Definition (Complex logarithm)
log(z) := log |z| + i arg(z),

where z ̸= 0. Branch cut {x ⩽ 0} ⊂ C.
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It can be shown to have the properties elog z = z = log(ez) and log(zw) = log(z) + log(w).

3.4 Complex integration

Given f [a, b] ∈ C, where [a, b] ∈ R, we define the integral∫ b

a

f(t)dt :=
∫ b

a

Re[f(t)]dt+ i
∫ b

a

Im[f(t)]dt.

Property
∣∣∣∣∣
∫ b

a

f(t)dt
∣∣∣∣∣ ⩽

∫ b

a

|f(t)| dt

Definition 3.3 We say that γ : [a, b] → C is a C1 curve if it is continuous over [a, b], the derivative γ′ exists
on (a, b) and extends to a continuous function γ′ : [a, b] → C.

Definition 3.4 (Contour integral) Given a continuous function f : Ω → C, and a C1 curve γ : [a, b] → C, we
define ∫

γ

f(z)dz =
∫ b

a

f
(
γ(t)

)
γ′(t)dt.

Property (Invariance under reparametrisation) For any C1 curve γ̃ : [ã, b̃] → Ω where γ̃ = γ(ϕ(t)) for some C1

bijection ϕ : [ã, b̃] → [a, b] with ϕ′ : [ã, b̃] → R positive, then∫
γ

f(z)dz =
∫
γ̃

f(z)dz.

If instead ϕ′ < 0 we have ∫
γ

f(z)dz = −
∫
γ̃

f(z)dz.

An important fact is if |f(z)| ⩽M then∣∣∣∣∫
γ

f(z)dz
∣∣∣∣ ⩽M

∫ b

a

|γ′(t)|dt = ML(γ), (3.4.1)

where L(γ) :=
∫ b
a

|γ′(t)| dt is the length of the image of γ.

Definition 3.5 We say that γ : [a, b] → C is a piecewise C1 curve if it is continuous on [a, b] and there exists
finitely many intermediate points a = c0 < c1 < · · · < cn = b such that the restriction of γ to each interval
[ci, ci+1] is a C1 curve.

Note Convention is to parametrise in the anti-clockwise direction.

Notation Consider a triangle T defined by the vertices z1, z2, z3 ∈ C. We parametrise ∂T by a curve γ :
[a, b] → C defined as

γ(t) :=


z1 + t(z2 − z1) if t ∈ [0, 1],
z2 + (t− 1)(z3 − z2) if t ∈ [1, 2],
z3 + (t− 2)(z1 − z3) if t ∈ [2, 3].

Then the contour integral around T is given by∫
∂T

f(z)dz =
∫
γ

f(z)dz

=
∫

[z1,z2]
f(z)dz +

∫
[z2,z3]

f(z)dz +
∫

[z3,z1]
f(z)dz.
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For the integral around an open ball around a point a, that is Br(a) := {z ∈ C : |z − a| < r}, we write∫
∂Br(a)

f(z)dz :=
∫
γ

f(z)dz

where γ : [0, 2π] → C is defined as γ(θ) := a+ reiθ.

3.5 Anti-derivatives, and a baby version of Cauchy’s theorem

Lemma 3.2 Suppose Ω ⊂ C is open and that f : Ω → C is continuous and F : Ω → C is holomorphic where
F ′(z) = f(z). If γ is a piecewise C1 curve in Ω, then∫

γ

f(z)dz = 0.

Lemma 3.3 Suppose F : Ω → C is holomorphic, with F ′ continuous. If γ : [a, b] → Ω is a piecewise C1 curve,
then ∫

γ

F ′(z)dz = F
(
γ(b)

)
− F

(
γ(a)

)
.

In particular, for a closed curved (i.e. γ(a) = γ(b)) we have
∫
γ
F ′(z)dz = 0.

Proof ∫
γ

F ′(z)dz =
∫ b

a

F ′(γ(t)
)
γ′(t)dt =

∫ b

a

d

dt
F
(
γ(t)

)
dt = F

(
γ(b)

)
− F

(
γ(a)

)
.

■

Note In the last step have used the assumption that F ′ is continuous.

Corollary 3.2 Suppose n ∈ Z does not equal −1. Then for γ : [a, b] → C \ {0} any piecewise C1 closed curve,
we have ∫

γ

zndz = 0.

Proof Define F (z) := zn+1/n + 1, then F ′(z) = zn and the result follows from Lemma 3.2. ■

Example 3.1 For r > 0 and k ∈ Z let γ : [0, 2π] → C be the closed C1 curve γ(θ) = reikθ that travels
anti-clockwise k times around the circle of radius r. Then∫

γ

dz

z
= 2πik.

4 Winding numbers

4.1 Winding numbers of continuous closed paths

Lemma 4.1 (Lifting lemma) Suppose γ : [a, b] → C \ {0} is continuous, and fix θ0 ∈ R such that γ(a) =
|γ(a)| eiθ0 . Then there exists a continuous function θ : [a, b] → R such that θ(a) = θ0 and γ(t) = |γ(t)| eiθ(t) for
all t ∈ [a, b].

Definition 4.1 Suppose γ : [a, b] → C \ {0} is continuous, and let θ : [a, b] → R be a function arising from
Lemma 4.1. We define

∡(γ) := θ(b) − θ(a).
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Note The function θ was only defined up to a constant multiple of 2π that was determined by θ0.
However, when we subtract θa from θb this unknown multiple of 2π will disappear, making ∡(γ) well-
defined.

Definition 4.2 (Winding number) Suppose γ : [a, b] → C \ {0} is a closed continuous path. Then we define the
winding number (or index) of γ around 0 to be

I(γ, 0) := 1
2π∡(γ) ∈ Z.

More generally, if w ∈ C and γ : [a, b] → C \ {w} then

I(γ,w) := I(γw, 0),

where γw : [a, b] → C \ {0} is the path γ translated to send w to the origin, i.e. γw(t) := γ(t) − w.

Example 4.1 For n ∈ Z, consider the curve γ : [0, 2π] → C defined by γ(θ) = reinθ, for some r > 0. Then

I(γ, 0) = n.

Remark 4.1 Suppose that γ : [a, b] → C\{0} is a closed continuous path taking values within a region on which
we can make a global continuous choice of arg(z). For example, for some α ∈ R, γ might map into the slit plane
C \ {−reiα : r ⩾ 0}, in which case we could decide to insist that arg(z) ∈ (α − π, α + π). Then one possibility
for the function θ(t) of Lemma 4.1 would be arg (γ(t)), and hence θ(a) = arg (γ(a)) = arg (γ(b)) = θ(b) and
we deduce that I(γ, 0) = 0. The branch cut {−reiα : r ⩾ 0} prevents γ from winding around the origin. By
translation of this picture we see that if γ : [a, b] → C is a closed continuous path that avoids a radial line from
some point w ∈ C out to infinity then I(γ,w) = 0.

4.2 Nearby closed paths have the same winding number

In this section we prove that if we have a closed path γ : [a, b] → C \ {0}, then a small-enough perturbation of γ will
wind round 0 the same number of times as γ itself.

Lemma 4.2 (Dog walking lemma) Suppose γ : [a, b] → C \ {0} and γ̃ : [a, b] → C \ {0} are continuous closed
paths, with |γ(t) − γ̃(t)| < |γ(t)| for every t ∈ [a, b]. Then

I(γ, 0) = I(γ̃, 0).

Proof Let θ(t) and θ̃(t) be lifts of the arguments of γ(t) and γ̃(t), respectively, as given by Lemma 4.1.
Define a continuous function α : [a, b] → R by α(t) := θ̃(t) − θ(t). If we consider a new continuous closed path
σ : [a, b] → C \ {0} defined by

σ(t) := γ̃(t)
γ(t)

then σ(t) = |σ(t)|eiα(t), so α(t) is a lift of the argument of σ(t). By definition of winding number, we have

I(γ̃, 0) − I(γ, 0) = 1
2π [γ̃(b) − γ̃(a)] − 1

2π [θ(b) − θ(a)]

= 1
2π (α(b) − α(a))

= I(σ, 0),

so we are reduced to proving I(σ, 0) = 0. But

|1 − σ(t)| =
∣∣∣∣γ(t) − γ̃(t)

γ(t)

∣∣∣∣ < 1,

so σ(t) ∈ B1(1) and I(σ, 0) = 0 by Remark 4.1. ■

Lemma 4.3 Suppose γ : [a, b] → C is a continuous closed path. Then on each connected component of
C \ ([a, b]), the function w 7→ I(γ,w) is constant.
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Note As the continuous image of a compact set, we know that γ([a, b]) is compact, and therefore (being a
subset of C) it is closed. We deduce that C \ γ([a, b]) is open.

Proof of Lemma 4.3 Exercise 1.10 reduces the proof to showing that I(γ,w) is constant in the neighbourhood
of every point w ∈ C \ γ([a, b]). Define ε := mint∈[a,b] |γ(t)|, then WLOG. we may assume that w = 0, such
that I(γ,w) is constant for w ∈ Bε(0), or equivalently I(γ,w) = I(γ, 0),∀w ∈ Bε(0). Define γ̃ : [a, b] → C \ {0}
by γ̃(t) = γ(t) − w, by definition I(γ,w) = I(γ̃, 0). We have |γ(t) − γ̃(t)| = |w| < ε ⩽ |γ(t)|,∀t ∈ [a, b], so
Lemma 4.2 implies

I(γ, 0) = I(γ̃, 0) = I(γ,w),

as required. ■

4.3 Winding number under homotopies

Theorem 4.1 Let w ∈ C. If γ1, γ2 : [a, b] → C \ {w} are homotopic continuous closed paths, then I(γ1, w) =
I(γ2, w). In particular, if γ : [a, b] → C \ {w} is a continuous closed path that is homotopic to a constant path,
then I(γ,w) = 0.

Corollary 4.1 If an open set Ω ⊂ C is simply connected then for every w ∈ C \ Ω and every continuous closed
path γ : [a, b] → Ω, we have I(γ,w) = 0.

Proof of Theorem 4.1 WLOG. we may assume that w = 0. Since that γ0 and γ1 are homotopic continuous
closed paths there exists a continuous map h : [0, 1] × [a, b] → C \ {0} such that

h(0, t) = γ1(t) and h(1, t) = γ2(t) for all t ∈ [a, b], (4.3.1)

i.e. the homotopy starts at γ1 and ends at γ2, and such that

h(s, a) = z0 and h(s, b) = z1 for all s ∈ [0, 1], (4.3.2)

where z0 := γ1(a) = γ2(a) = γ1(b) = γ2(b) is the fixed end point. In particular for each s ∈ [0, 1], we have a
continuous closed curve γs : [a, b] → C \ {0} defined by γs(t) := h(s, t). It suffices to prove that the winding
number I(γs, 0) is constant in s.

By compactness of [0, 1] × [a, b], there exists an ε > 0 such that |h| ⩾ ε. Because h is continuous on its
compact domain, it is also uniformly continuous. Therefore, we can pick a δ > 0 such that for all t ∈ [a, b] and
s1, s2 ∈ [0, 1] with |s1 − s2| < δ, we have

|h(s1, t) − h(s2, t)| < ε,

and therefore
|γs1(t) − γs2(t)| = |h(s1, t) − h(s2, t)| < ε ⩽ |γs1(t)| .

By Lemma 4.2, I(γs1 , 0) = I(γs2 , 0) where |s1 − s2| < δ, which implies that the map s 7→ I(γs, 0) is locally
constant and thus constant for all s ∈ [0, 1]. ■

4.4 The winding number as an integral

The winding number is often defined as an integral.

Lemma 4.4 If w ∈ C and γ : [a, b] → C \ {w} is a closed piecewise C1 curve, then

I(γ,w) = 1
2πi

∫
γ

dz

z − w
.

Proof WLOG. we may assume that w = 0. Let’s assume that γ is C1. By definition∫
γ

dz

z
=
∫ b

a

γ′(t)
γ(t) dt.
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By the Lifting lemma, there exists a continuous function θ(t) such that γ(t) = |γ(t)|eiθ(t). We compute

γ′(t) = eiθ(t) d

dt
|γ(t)| + |γ(t)|iθ′(t)eiθ(t),

and so
γ′(t)
γ(t) = d

dt
log |γ(t)| + iθ′(t).

Integrating yields∫
γ

dz

z
=
∫ b

a

[
d

dt
log |γ(t)| + iθ′(t)

]
= 0 + i [θ(b) − θ(a)] = i∡(γ) = 2πiI(γ, 0)

since γ is closed. ■

Example 4.2 Consider the same curve as in Example 4.1. We have I(γ, 0) = 1
2πi

∫
γ
dz
z = n, as expected.

5 Cauchy’s Theorem

5.1 Preamble

Theorem 5.1 (Cauchy’s theorem on simply connected domains) Suppose Ω ⊂ C is open and simply connected.
Suppose further that f : Ω → C is holomorphic and γ is a piecewise C1 closed curve in Ω. Then∫

γ

f(z)dz = 0.

If we drop the requirement that Ω be simply connected, then Cauchy’s theorem fails.

Example 5.1 Consider the holomorphic function f(z) = 1
z on Ω := C \ {0}, and for r > 0 let γ : [0, 2π] → C

be the closed C1 curve γ(θ) = reiθ that travels anti-clockwise around a circle of radius r. Then∫
γ

f(z)dz =
∫ 2π

0
r−1e−iθireiθdθ = i

∫ 2π

0
dθ = 2πi ̸= 0.

5.2 Goursat’s theorem - Cauchy’s theorem on triangles

Theorem 5.2 (Goursat’s theorem) Suppose Ω ⊂ C is open and contains a closed triangle T . Suppose further
that f : Ω → C is holomorphic. Then ∫

∂T

f(z)dz = 0.

Proof We can decompose T into four congruent triangles T1, . . . , T4.

T1

T2 T3

T4Ω

T

Due to cancellation of inner edges we have∫
∂T

f(z)dz =
4∑
i=1

∫
∂Ti

f(z)dz

and the triangle inequality tells us that∣∣∣∣∫
∂T

f(z)dz
∣∣∣∣ ⩽ 4∑

i=1

∣∣∣∣∫
∂Ti

f(z)dz
∣∣∣∣ .

Let T 1 be the sub-triangle such that∣∣∣∣∫
∂T

f(z)dz
∣∣∣∣ ⩽ 4

∣∣∣∣∫
∂T 1

f(z)dz
∣∣∣∣ .
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We can repeat this process for T 1 to obtain a smaller triangle T 2 with the property that∣∣∣∣∫
∂T 1

f(z)dz
∣∣∣∣ ⩽ 4

∣∣∣∣∫
∂T 2

f(z)dz
∣∣∣∣ .

Iterating yields a sequence of triangles Tn whose diameters and boundary lengths decay geometrically, that is
diam(Tn) = 2−n diam(T ) and L(∂Tn) = 2−nL(∂T ), such that∣∣∣∣∫

∂T

f(z)dz
∣∣∣∣ ⩽ 4n

∣∣∣∣∫
∂Tn

f(z)dz
∣∣∣∣ . (5.2.1)

Now pick, for each n ∈ N, a point zn ∈ Tn. Because the triangles are nested, with diameter converging to zero,
zn is a Cauchy sequence and thus has a limit z∞ ∈ T ⊂ Ω. By definition of the complex differentiability of f
at z∞, for all ε > 0 there exists δ > 0 such that for all z ∈ Bδ(z∞) we have

f(z) = f(z∞) + f ′(z∞)(z − z∞) +R(z),

where the remainder is controlled by |R(z)| ⩽ ε|z − z∞|. For sufficiently large n, we have Tn ⊂ Bδ(z∞), and
therefore ∫

∂Tn

f(z)dz =
∫
∂Tn

[f(z∞) + f ′(z∞)(z − z∞) +R(z)] dz

= (f(z∞) − f ′(z∞)z∞)
∫
∂Tn

dz + f ′(z∞)
∫
∂Tn

z dz +
∫
∂Tn

R(z)dz

=
∫
∂Tn

R(z)dz

where we have used that ∫
∂Tn

dz = 0 and
∫
∂Tn

z dz = 0

by Corollary 3.2. Therefore, by (3.4.1), we have∣∣∣∣∫
∂Tn

f(z)dz
∣∣∣∣ ⩽ L(∂Tn)ε sup

∂Tn

|z − z∞| ⩽ 2−nL(∂T )εdiam(Tn) ⩽ 4−nεL(∂T ) diam(T ).

Substituting into (5.2.1) gives ∣∣∣∣∫
∂T

f(z)dz
∣∣∣∣ ⩽ εL(∂T ) diam(T ),

and because ε is arbitrary, this completes the proof. ■

5.3 Goursat’s conclusion gives us an anti-derivative

Definition 5.1 (Star-shaped domain)
An open set Ω ⊂ C is called a star-shaped domain if there exists z0 ∈ Ω
such that for all z ∈ Ω, the line segment [z0, z] connecting z0 to z also lies in
Ω. We call such a point z0 a central point.

Note This is more general than convexity.

Ω

z0

Theorem 5.3 (The output of Goursat’s theorem implies the existence of an anti-derivative) Suppose that Ω is a
star-shaped domain, and f : Ω → C is a continuous function. Suppose that for every closed triangle T ⊂ Ω, we
have ∫

∂T

f(z)dz = 0.

Then there exists a holomorphic function F : Ω → C such that F ′(z) = f(z). Indeed, if z0 is a central point of
the star-shaped domain then we can take F defined by

F (z) =
∫

[z0,z]
f(w)dw, (5.3.1)

where we defined this to be the integral of f over the C1 curve γ : [0, 1] → Ω given by γ(t) = z0 + t(z − z0).
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5 CAUCHY’S THEOREM

Proof Let’s fix a point z ∈ Ω, such that we can choose r > 0 with Br(z) ⊂ Ω.

For all h ∈ Br(0), the segment [z, z + h] must lie in Ω. Since Ω is star-shaped
wrt. to z0, the closed triangle T with vertices z0, z and z + h must lie in Ω.
By assumption, ∫

∂T

f(w)dw = 0,

and hence
F (z + h) −

∫
[z,z+h]

f(w)dw − F (z) = 0.

Keeping in mind that∫
[z,z+h]

dw =
∫ 1

0
γ′(t)dt = γ(1) − γ(0) = (z + h) − z = h. z0

z
z + h

Br(z)

T

We can use (5.2.1) to compute∣∣∣∣F (z + h) − F (z)
h

− f(z)
∣∣∣∣ =

∣∣∣∣∣ 1h
∫

[z,z+h]
(f(w) − f(z)) dw

∣∣∣∣∣ ⩽ max
w∈[z,z+h]

|f(w) − f(z)| → 0

as h → 0 since f is continuous at z. Thus, F is complex differentiable at z and F ′(z) = f(z). ■

5.4 Cauchy’s theorem on star-shaped domains

Corollary 5.1
Suppose that Ω is a star-shaped domain, and f : Ω → C is a holomorphic
function. Then there exists a holomorphic function F : Ω → C such that
F ′(z) = f(z). If z0 is a central point of the star-shaped domain then we can
take F defined by

F (z) =
∫

[z0,z]
f(w)dw.

Ω
z0

z

Combining this corollary with Lemma 3.2, immediately yields an accurate proof of Cauchy’s theorem in the special
case that Ω is star-shaped.

Theorem 5.4 (Cauchy’s theorem on a star-shaped domain) Suppose that Ω is a star-shaped domain, f : Ω → C
is holomorphic and γ is a piecewise C1 closed curve in Ω. Then∫

γ

f(z)dz = 0.

5.5 Cauchy’s theorem on annuli

Corollary 5.2 (Cauchy’s theorem on annuli)
Suppose that 0 ⩽ r1 < R1 < R2 < r2, and that f is a holomorphic function
on the annulus Ar1,r2 := {z ∈ C : r1 < |z| < r2}.
Then writing A := {z ∈ C : R1|z| < R2}, we have∫

∂A

f(z)dz = 0, (5.5.1)

or equivalently that ∫
∂BR2 (0)

f(z)dz =
∫
∂BR1 (0)

f(z)dz. (5.5.2)

r1

r2

R1

R2

Proof
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6 TAYLOR SERIES AND APPLICATIONS

We can divide AR1,R2 into n sections A1, . . . , An such that∫
∂A

f(z)dz =
n∑
i=1

∫
∂Ai

f(z)dz,

due to cancellation of inner edges. For n sufficiently large, each Ai will fit
within a star-shaped domain within AR1,R2 such that

∫
∂Ai

f(z)dz = 0 ⇒∫
∂A
f(z)dz = 0.

A1

■

5.6 Cauchy’s integral formula

Theorem 5.5 (Cauchy’s integral formula on a disc) Suppose Ω ⊂ C is open and f : Ω → C is holomorphic.
Suppose that the closed disc/ball Br(a) of radius r > 0, centred at a ∈ Ω, lies within Ω. Then for every
z ∈ Br(a) we have

f(z) = 1
2πi

∫
∂Br(a)

f(w)
w − z

dw.

Proof For the given z ∈ Br(a), choose δ > 0 small enough such that Bδ(z) ⊂ Br(a).

The function f(w)−f(z)
w−z is defined and holomorphic on Ω\{z}, and by Cauchy’s

theorem for star-shaped domains, Theorem 5.4, we have∫
γ1

f(w) − f(z)
w − z

dw = 0.

We can repeat for γ2, and add to give∫
∂Br(a)

f(w) − f(z)
w − z

dw =
∫
∂Bδ(z)

f(w) − f(z)
w − z

dw. (5.6.1)

Note The integrals cancel along the diameter.

Because limw→z0
f(w)−f(z)

w−z = f ′(z), and the length of ∂Bδ(z) is 2πδ, we see
that the RHS. of (5.6.1) converges to 0 as δ → 0+, by (3.4.1). Therefore

a
z

γ1

a
z

γ2

∫
∂Br(a)

f(w)
w − z

dw =
∫
∂Br(a)

f(z)
w − z

dw = f(z)2πiI(∂Br(a), z) = f(z)2πi,

by the integral characterisation of winding number given in Lemma 4.4, and the formula for the winding number
derived in Q. 4.2. ■

6 Taylor series and applications

6.1 Taylor series - main result

Theorem 6.1 (Taylor’s theorem) Let Ω ⊂ C be open, and let f : Ω → C be holomorphic. Suppose z0 ∈ Ω and
r > 0 such that Br(z0) ⊂ Ω. Then for all z ∈ Br(z0), we have

f(z) =
∞∑
k=0

ak(z − z0)k, (6.1.1)

where,
ak = 1

2πi

∫
∂Br(z0)

f(w)
(w − z0)k+1 dw. (6.1.2)

Proof is given in the next subsection.
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Remark 6.1 By Cauchy’s theorem on annuli, Corollary 5.2, we could reduce the radius of the circle over which
we are integrating in (6.1.2) to give

ak = 1
2πi

∫
∂Bs(z0)

f(w)
(w − z0)k+1 dw

for any s ∈ (0, r]. In particular, the Taylor coefficients ak do not depend on r.

Remark 6.2 Taylor’s theorem tells us that a holomorphic function is analytic (can be written as a power
series in some ball about each point z0 ∈ Ω) and Theorem 3.2 gives the converse. Hence, the terms holomorphic
and analytic are often used interchangeably.

From this we can deduce the following result.

Corollary 6.1 If f : Ω → C is a holomorphic function on an open set Ω ⊂ C then it is infinitely differentiable.

Corollary 6.2 (cf. Cauchy’s integral formula) If f : Ω → C is a holomorphic on an open set Ω ⊂ C, and
Br(z0) ⊂ Ω for some z0 ∈ Ω and r > 0, then for each n ∈ N we have

f (n)(z0) = n!
2πi

∫
∂Br(z0)

f(w)
(w − z0)n+1 dw.

This is immediate from Corollary 3.1.

6.2 Taylor’s theorem - proof

Proof of Taylor’s theorem By translation we may assume that z0 = 0. Cauchy’s integral formula tells us
that for all z ∈ Br(0) we have

f(z) = 1
2πi

∫
∂Br(0)

f(w)
w − z

dw. (6.2.1)

We can rewrite
1

w − z
= 1
w

[
1

1 − z/w

]
(6.2.2)

and since z ∈ Br(0) and w ∈ ∂Br(0), |z|
|w| < 1 and we may write the part in square brackets in (6.2.1) as a

geometric series
1

1 − z/w
=

∞∑
k=0

( z
w

)k
. (6.2.3)

Therefore

f(z) = 1
2πi

∫
∂Br(0)

f(w)
( ∞∑
k=0

zk

wk+1

)
dw

= 1
2πi

∞∑
k=0

(∫
∂Br(0)

f(w)
wk+1 dw

)
zk

=
∞∑
k=0

akz
k.

The interchange of the summation and the integration is justified because the sum converges uniformly in the
integration variable w. ■

6.3 Basic consequences of Taylor’s theorem. Liouville’s theorem.

Corollary 6.3 Suppose that f(z) =
∑∞
k=0 akz

k is holomorphic on BR(0) for some R > 0, and that for all
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z ∈ BR(0) we have |f(z)| ⩽M ⩽ ∞. Then for all k

|ak| ⩽ M

Rk
. (6.3.1)

Proof For each r ∈ (0, R), Taylor’s theorem applied on Br(0) gives f(z) as a power series. By uniqueness of
the Taylor coefficients, ak is given by (6.1.2). Hence,

|ak| ⩽ 1
2π

∣∣∣∣∣
∫
∂Br(0)

f(w)
wk+1 dw

∣∣∣∣∣ ⩽ 1
2π 2πr M

rk+1 = M

rk
, (6.3.2)

by (3.4.1). Then let r ↑ R. ■

Corollary 6.4 (Liouville’s theorem) Any bounded entire function is constant.

Proof By applying Taylor’s theorem with z0 = 0 and arbitrarily large R, we can write our entire function
f : C → C as a Taylor series f(z) =

∑∞
k=0 akz

k. We are assuming that f is bounded, i.e. |f(z)| ⩽ M for all
z ∈ C, so by Corollary 6.3 we have |ak| ⩽ M

Rk , for every k ∈ N and R > 0. By taking R → ∞ we deduce that
ak = 0 for each k ⩾ 1 and f = a0. ■

Corollary 6.5 (Fundamental Theorem of Algebra) Every non-constant polynomial has at least one zero in C.

Proof This proof is non-examinable, so I will only provide a sketch proof. Essentially the idea is that if
a polynomial p(z) does not have a zero then one can show that 1/p is a bounded entire function, and must
therefore be constant by Liouville’s theorem. ■

6.4 Morera’s Theorem

The following is an inverse to Goursat’s theorem.

Theorem 6.2 (Morera’s theorem) Suppose Ω ⊂ C is open and f : Ω → C is a continuous function. Suppose
that for all closed triangles T ⊂ Ω we have ∫

∂T

f(z)dz = 0,

then f is holomorphic on Ω.

Proof We need to show that f is complex differentiable at an arbitrary point a ∈ Ω. Pick r > 0 sufficiently
small so that Br(a) ⊂ Ω. By Theorem 5.3, we can construct a holomorphic function F : Br(a) → C with
F ′(z) = f(z) for all z ∈ Br(a). Because F is holomorphic, Corollary 6.1 tells us that it is infinitely complex
differentiable. In particular, f = F ′ is complex differentiable at a. ■

6.5 Local invertibility of holomorphic functions

Lemma 6.1 Suppose Ω ⊂ C is open and f : Ω → C is holomorphic with f ′(z0) ̸= 0 at some z0 ∈ Ω. Then
there exists a neighbourhood V0 ⊂ Ω of z0 and a neighbourhood V1 ⊂ Ω of f(z0) such that the restriction of f
to V0 is a biholomorphic map from V0 to V1.

The requirement that f ′(z0) ̸= 0 is immediate if we consider f ≡ 0 or f(z) = z2 with z0 = 0.

Proof From Corollary 6.1, we know that f is a C1 function when viewed as a real-differentiable function. Our
hypothesis f ′(z0) ̸= 0 tells us that the real derivative of f is a rotation and/or dilation. In particular, the real
derivative is invertible and the Inverse Function Theorem applies. That is, there exist neighbourhoods V0 and
V1 of z0 and f(z0) respectively, and f−1 : V1 → V0 is also C1. We may assume that f ′(z) ̸= 0 for all z ∈ V0 for
sufficiently small V0, by continuity of f . We need to show that f−1 is holomorphic, i.e. that it satisfies the C.R.
equations, and that its derivative is non-zero. Using (1.2.6), we have that for all any C1 function g : V1 → V0

(f ◦ g)z(z) = f ′ (g(z)) gz(z)
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7 ZEROS OF HOLOMORPHIC FUNCTIONS

for all z ∈ V1. If we let g = f−1, we deduce that

0 = zz = f ′ (f−1(z)
)−1
z

(z)

which implies (f−1)z ≡ 0 since f ′ ̸= 0. Since f−1 is holomorphic we can use (1.2.7) to deduce that

1 = z′(z) = f ′ (f−1(z)
)

(f−1)′(z)

⇒ (f−1)′(z) = 1
f ′(f−1(z)) ̸= 0

since f ′ ̸= 0. ■

7 Zeros of holomorphic functions

7.1 Basic structure

Consider the holomorphic function f : C → C defined by f(z) = zn, for some n ∈ N. This function is zero precisely
at z = 0. The order of the zero, defined below, will be n.

Definition 7.1 (Order) Let Ω ⊂ C be open and let f : Ω → C be a holomorphic with f(z0) = 0 for some
z0 ∈ Ω. We define the order of f at z0 to be

ord(f, z0) :=
{

∞ if f (k)(z0) = 0 for all k ∈ N,
min{k ∈ N : f (k)(z0) ̸= 0} otherwise.

(7.1.1)

Example 7.1 If g : Ω → C is a holomorphic function for which g(z0) ̸= 0, and we define the holomorphic
function f(z) := (z − z0)ng(z), then the order of the zero of f at z0 is n. This is because as we differentiate
k < n times, using the product rule, each of the resulting terms will have at least a factor (z − z0)n−k within
it, so will vanish at z0. But if we differentiate n times, and evaluate at z0, then there will be one non-zero term
n!g(z0).

Theorem 7.1 Suppose that Ω ⊂ C is open and f : Ω → C is a holomorphic function that has zero of finite
order n ∈ N at z0 ∈ Ω. Then there exists a holomorphic function g : Ω → C such that

f(z) = (z − z0)ng(z),

and g is non-zero in a neighbourhood of z0. In particular, each zero of finite order is an isolated point of the
set of zeros.

Proof Pick r > 0 such that Br(z0) ⊂ Ω, we can use Taylor’s theorem to write

f(z) =
∞∑
k=0

ak(z − z0)k.

Corollary 3.1 tells us that ak = f(k)(z0)
k! , and because f has a zero of order n at z0, we must have ak = 0 for

k < n, and an ̸= 0. So, we can write, for all z ∈ Br(z0)

f(z) =
∞∑
k=n

ak(z − z0)k = (z − z0)n
∞∑
k=0

ak+n(z − z0)k = (z − z0)ng(z), (7.1.2)

where g(z) :=
∑∞
k=0 ak+n(z − z0)k is defined on Br(z0), and g(z0) ̸= 0. We can extend g to the rest of Ω by

setting g(z) = f(z)(z − z0)−n, which only disagrees at z0. ■

Theorem 7.2 Suppose that Ω ⊂ C is open and connected, and f : Ω → C is a holomorphic function that has
a zero of infinite order at some point z0 ∈ Ω. Then f ≡ 0.

Proof Consider the set Ω0 := {z ∈ Ω : f has a zero of order infinity at z}. Our aim is to prove that Ω0 = Ω.
We know that Ω0 is non-empty, since z0 ∈ Ω0. By connectedness of Ω, it suffices to show that Ω0 is open and
closed in Ω.
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Pick an arbitrary point w0 ∈ Ω0. The Taylor series of f at z = w0, given by Taylor’s theorem, has coefficients
ak = f(k)(z0)

k! = 0 using Corollary 3.1. Hence, f ≡ 0 in any ball Br(w0) ⊂ Ω0 ⊆ Ω and Ω0 must be open.

If we take a sequence zi ∈ Ω0 that converges to some z∞ ∈ Ω, then f(z∞) = 0 by continuity of f . But z∞ cannot
be a zero of finite order since we have seen that such zeros are isolated within the set of all zeros. Therefore,
z∞ ∈ Ω0, and we can deduce that Ω0 is (relatively) closed. ■

7.2 The identity theorem

Definition We call z∞ ∈ Ω an accumulation point of Σ if there exists a sequence zi ∈ Σ \ {z∞} such that
zi → z∞. This is the opposite of an isolated point.

Theorem 7.3 (Identity theorem) Let Ω ⊂ C be open and connected and let f1 and f2 be holomorphic functions
Ω 7→ C. If the set Σ := {z ∈ C : f1(z) = f2(z)} has at least one accumulation point in Ω, then f1 ≡ f2 throughout
Ω.

Equivalently, two holomorphic functions on an open and connected set are either identical or agree only at
isolated points.

Proof By hypothesis, the function g := f1 − f2 is holomorphic and has a non-isolated zero. By Theorem 7.1,
this zero must be of infinite order (not isolated), and then by Theorem 7.2, we must have g ≡ 0 throughout Ω,
i.e. f1 ≡ f2. ■

Example 7.2 Suppose f is a holomorphic function on the ball B2(0) ⊂ C, and suppose we know that f( 1
n ) = 0

for all n ∈ N. Then we can deduce that f is identically zero on B2(0).

Example 7.3 Consider the function f(z) := z2 sin
(
π
z

)
on C. This is clearly holomorphic on {Re(z) > 0} and

f( 1
n ) = 0,∀n ∈ N. We can construct a sequence of zeros which accumulates at {Re(z) = 0}, the boundary of

{Re(z) > 0}. Thus, we can’t deduce that f ≡ 0.

7.3 Refined structure

Theorem 7.4 Let Ω ⊂ C be open and f : Ω → C holomorphic. If f has a zero of finite order k ⩾ 1 at z0 ∈ Ω,
then there exists a neighbourhood V0 ⊂ Ω of z0, a radius r > 0 and a biholomorphic function h : V0 → Br(0)
such that for every z ∈ V0, we have

f(z) =
(
h(z)

)k
. (7.3.1)

In particular, f is locally k-to-one near z0. This means that f takes every value in Brk (0) \ {0} exactly k times
in V0.

Proof is given below.

Intuitively, we would like to define h(z) := (z − z0)e
1
k log g(z) but require an unambiguous definition of the logarithm.

Lemma 7.1 Suppose Ω ⊂ C is open and connected, and g : Ω → C \ {0} is a holomorphic function such that
the ‘holomorphic derivative’ g

′(z)
g(z) admits an anti-derivative. That is, we assume that there exists a holomorphic

F : Ω → C such that F ′(z) = g′(z)
g(z) . Then there exists w0 ∈ C so that when we define a holomorphic function

ℓ : Ω → C by
ℓ(z) := F (z) + w0, (7.3.2)

we have
g(z) = eℓ(z) for all z ∈ Ω. (7.3.3)

The function ℓ is unique up to an additive constant 2πin for n ∈ Z.

Corollary 7.1 Suppose Ω ⊂ C is star-shaped and g : Ω → C \ {0} is holomorphic. Then there exists a
holomorphic function ℓ : Ω → C, unique up to an integer multiple of 2πi, such that

g(z) = eℓ(z).
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In particular, for k ∈ N, the function z 7→ e
1
k ℓ(z) gives a holomorphic function on Ω whose kth power is g(z).

Proof of Lemma 7.1 Fix an arbitrary z0 ∈ Ω. As g(z0) ̸= 0 by assumption, we can pick w0 ∈ C such that
ew0 = g(z0)e−F (z0). We compute(

g(z)e−ℓ(z)
)′

= g′(z)e−ℓ(z) − g(z)e−ℓ(z)ℓ′(z) = e−ℓ(z) (g′(z) − g(z)F ′(z)) = 0, (7.3.4)

which tells us that g(z)e−ℓ(z) is constant and equals 1 at z0, such that g(z) = eℓ(z) as required. ■

Proof of Theorem 7.4 By Theorem 7.1, we can write

f(z) = (z − z0)kg(z), (7.3.5)

where g ̸= 0 on a neighbourhood Bs(z0) ⊂ Ω of z0, for some s > 0. We apply Corollary 7.1 (with Ω = Bs(z0)
there), to obtain a holomorphic function ℓ : Bs(z0) → C such that g(z) = eℓ(z), and then defining

h(z) = (z − z0)e
1
k ℓ(z).

So, h(z)k = f(z) as required. Observe that h′(z0) = e
1
k ℓ(z0) ̸= 0. Applying the local invertibility lemma, we can

find neighbourhoods V0 ⊂ Bs(z0) of z0 and V1 of h(z0) = 0, so that the restriction h : V0 → V1 is biholomorphic.
By shrinking these neighbourhoods, we may assume that V1 = Br(0) for some r > 0. More precisely, we take
r > 0 small enough so that Br(0) ⊂ V1, and then redefine V1 = Br(0) and V0 = h−1(Br(0)).

To see the k-to-one property, pick an arbitrary point w ∈ Brk (0) \ {0}. Then there are precisely k points
ξ1, . . . , ξk, all lying in Br(0), such that ξkj = w for each j ∈ {1, . . . , k}. So within V0, precisely the k points
h−1(ξj) are mapped to w by f . ■

7.4 Open mapping theorem; Maximum modulus principle; Mean value property

Theorem 7.5 (Open mapping theorem) Suppose Ω ⊂ C is open and connected, and f : Ω → C is holomorphic
but not constant. Then the image f(Ω) of Ω under f is also open and connected.

Proof Topology tells us that the image of every connected set under a continuous function is connected. RTP
that the image is open. That is, for any point w0 = f(z0) ∈ f(Ω) there exists a neighbourhood of w0 contained
in f(Ω).

The function g(z) := f(z)−w0 has a zero at z0, which must be of finite order. Otherwise, g would be identically
zero by Theorem 7.2, and we would have f = w0 which contradicts our assumption. By Theorem 7.4, locally we
have that f(z) = w0 + (h(z))k, where h is a biholomorphic map onto Br(0). Therefore, the image of f contains
the ball Brk (0). ■

Corollary 7.2 (Maximum modulus principle) Suppose Ω ⊂ C is open and connected, and f : Ω → C is holo-
morphic but not constant. Then |f | does not have any local maxima.

Proof Suppose that |f | attains a local maximum at z0 ∈ Ω. By the Open mapping theorem, the image of
any neighbourhood of z0 is a neighbourhood of f(z0), and therefore must contain points with larger absolute
value, contradicting our assumption. ■

Ω

z0

Re

Im
f(z0)

Lemma 7.2 (Mean value property) Suppose Ω ⊂ C is open with Br(z0) ⊂ Ω, for some r > 0 and z0 ∈ Ω.
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Suppose that f : Ω → C is holomorphic. Then

f(z0) = 1
2π

∫ 2π

0
f(z0 + reiθ)dθ, (7.4.1)

that is, f(z0) equals the average of f over the circle of radius r centred at z0.

Proof By Cauchy’s integral formula, we have

f(z0) = 1
2πi

∫
∂Br(z0)

f(z)
z − z0

dz = 1
2πi

∫ 2π

0

f(z0 + reiθ)ireiθ

reiθ dθ

= 1
2π

∫ 2π

0
f(z0 + reiθ)dθ.

■

7.5 Injective holomorphic functions are biholomorphic onto their image

Recall our definition of a biholomorphic function.

Theorem 7.6 Suppose Ω ⊂ C is a domain (open and connected) and f : Ω → C is both injective and
holomorphic. Then f(Ω) is a domain and f : Ω → f(Ω) is a biholomorphic map.

Proof Since Ω is connected and f is continuous, the image f(Ω) is connected. By the Open mapping theorem,
f(Ω) is an open subset of C. (f cannot be constant as it is injective). Therefore, f(Ω) is a domain.

Suppose that we could find some z0 ∈ Ω such that f ′(z0) = 0. Then the function ϕ(z) = f(z) − f(z0) would
satisfy ϕ(z0) = ϕ′(z0) = 0. That is, ϕ would have a zero of order k ⩾ 2 at z0, and Theorem 7.4 would then
imply that ϕ could not be injective and therefore that f could not be injective, which is a contraction.

Using that f ′(z) ̸= 0 in Ω and Lemma 6.1, we find that f is locally biholomorphic. Since f is bijective, it must
be (globally) biholomorphic. ■

7.6 Schwarz lemma

Theorem 7.7 (Schwarz lemma) Let f : D → D be holomorphic on D with f(0) = 0. Then

(i) |f ′(0)| ⩽ 1, and

(ii) |f(z)| ⩽ |z| for all z ∈ D.

If we have equality in (i), or (ii) for some z ∈ D \ {0}, then f(z) = eiθz for some θ ∈ R.

Proof If the zero of f at z = 0 is of infinite order, then f ≡ 0 and the theorem is trivial. So by Theorem 7.1,
there exists a holomorphic function g : D → C such that for all z ∈ D we have f(z) = zg(z).

Suppose r ∈ (0, 1). For all z with |z| = r we have

1 ⩾ |f(z)| = |z||g(z)| = r|g(z)|, (7.6.1)

and hence |g(z)| < 1
r . By the Maximum modulus principle, |g| must attain its maximum over the ball Br(0)

on the boundary {|z| = r}, and thus we have |g(z)| < 1
r for all |z| ⩽ r. By taking the limit r → 1+, we obtain

|g(z)| ⩽ 1 throughout D. This implies (i) because f ′(0) = g(0), and implies (ii) because |f(z)| = |z||g(z)|.

If instead we have equality in (i) or (ii), then we have |g(z)| = 1 for some z ∈ D. Then the Maximum modulus
principle implies that g must be constant, i.e. we can write g(z) = eiθ for some θ ∈ R. ■

Corollary 7.3 (Classification of biholomorphic maps of the disc) Every biholomorphic function f : D → D is a
Möbius transformation of the form (2.7.2).

Proof Suppose that f(0) = 0 such that we can apply the Schwarz lemma to both f and f−1. Then |f(z)| ⩽ |z|
and |z| = |f−1(f(z)

)
| ⩽ |f(z)|, i.e. |f(z)| = |z|. Since we have equality then f is a rotation.

In the general case f(0) = w, we set w = f−1(0) and define φ(z) = z−w
wz−1 . Considering Example 2.3, we see
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8 ISOLATED SINGULARITIES

that f ◦φ is a biholomorphic map from D to itself that maps 0 to 0, so it is of the form z 7→ eiθz. Furthermore,
φ is its own inverse. Therefore,

f(z) = f ◦ φ ◦ φ(z) = eiθ z − w

wz − 1
as required. ■

8 Isolated singularities

8.1 Riemann’s removable singularity theorem

Definition 8.1 (Isolated singularity) A function f that is holomorphic on Br(a) \ {a} ⊂ C, for some r > 0 and
a ∈ C, is said to have an isolated singularity at a.

Theorem 8.1 (Riemann’s removable singularity theorem) Let f : Br(a) \ {a} → C be a holomorphic function
from a ball of radius r > 0 centred at a ∈ C. Suppose that

|f(z)| ⩽M for some M < ∞ and every z ∈ Br(a) \ {a},

or more generally that
lim
z→a

(z − a)f(z) = 0.

Then we can extend f to a holomorphic function f : Br(a) → C.

Proof Define g : Br(a) → C by

g(z) =
{

(z − a)2f(z) for z ∈ Br(a) \ {a}
0 for z = a.

(8.1.1)

By the product rule, g is holomorphic when restricted to Br(a). We can compute

g(z) − g(a)
z − a

= (z − a)f(z) → 0

as z → a, by our assumption (8.1.1). Thus, g is complex differentiable at z = a with g′(a) = 0 such that this
zero is of order at least 2. If the zero at a is of infinite order then g ≡ f ≡ 0 by Theorem 7.2. Otherwise, we
apply Theorem 7.1 to obtain

g(z) = (z − a)nh(z),

for holomorphic h : Br(a) → C with h(a) ̸= 0. But then (z − a)n−2h(z) is a holomorphic function on Br(a)
that equals f on Br(a) \ {a}. ■

8.2 Classification of isolated singularities; description of poles

Definition 8.2 A holomorphic function f : Br(z0) \ {z0} → C is said to have a

(1) removable singularity at z0 if f(z) has a limit in C as z → z0,

(2) pole at z0 if f(z) → ∞ as z → z0,

(3) essential singularity at z0 if neither of the previous two cases hold.

Example 8.1 The function f(z) = 1/zn on D \ {0} has a pole (of order n) at 0.

Example 8.2 For any entire function g, the function h(z) := g(1/z) will have an essential singularity at 0.

If f : Br(z0) \ {z0} → C is holomorphic and has a pole at z0, then for sufficiently small r > 0 we may assume that
|f(z)| ⩾ 1 for all z ∈ Br(z0). Therefore, 1/f(z) is bounded and holomorphic on Br(z0) \ {z0}. By Riemann’s removable
singularity theorem, it is the restriction of some holomorphic function ϕ : Br(z0) → C with ϕ(z0) = 0. The zero of
ϕ at z0 must be of finite order (otherwise ϕ ≡ 0). Thus, we can apply Theorem 7.1 to obtain ϕ(z) = (z − z0)nψ(x),
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8 ISOLATED SINGULARITIES

where ψ is holomorphic on Br(z0) with ψ(z0) ̸= 0. Defining g(z) = 1/ψ(z) gives another holomorphic and non-zero
function on Br(z0), and we see that we have proved an analogue of Theorem 7.1 for poles:

Theorem 8.2 Suppose that a holomorphic f : Br(z0) \ {z0} → C has a pole at z0. Then there exists n ∈ N
and a holomorphic function g : Br(z0) → C such that

f(z) = g(z)
(z − z0)n .

The integer n is called the order of the pole. If n = 1 then f is said to have a simple pole.

A meromorphic function is, loosely speaking, a function that does not have essential singularities.

Definition 8.3 (Meromorphic function) Suppose Ω ⊂ C is open. A holomorphic function f : Ω \ P → C, where
P ⊂ Ω is a discrete subset, is said to be meromorphic if it has a pole at each point in P.

Example 8.3 The function f(z) = 1
ez−1 is meromorphic on C with poles at z = 2πin for n ∈ Z.

8.3 Essential singularities

Theorem 8.3 (Casorati-Weierstrass theorem) Suppose that f : Br(z0) \ {z0} → C is holomorphic and has an
essential singularity at z0. Then however small we take δ ∈ (0, r), the image f

(
Bδ(z0) \ {z0}

)
is dense in C.

Proof Suppose that f
(
Bδ(z0) \ {z0}

)
is not dense in C. Then there exists w ∈ C and ϵ > 0 such that

|f(z) − w| ⩾ ϵ for all z ∈ Bδ(z0) \ {z0}. The function

h(z) = 1
f(z) − w

is holomorphic on Bδ(z0) \ {z0} and bounded by 1/ϵ. By Riemann’s removable singularity theorem, h extends
to a holomorphic function on Bδ(z0). If h(z0) ̸= 0, then we can rewrite f(z) = w + 1/h(z) on Bδ(z0), and f
has a removable singularity at z0. If h(z0) = 0, then h must have a zero of finite order n ∈ N at z0 and by
Theorem 7.1

h(z) = (z − z0)ng(z)

for some non-zero holomorphic g : Bδ(z0) → C. But then

f(z) = w + 1
(z − z0)ng(z)

on Bδ(z0), and we see that f has a pole at z0. In either case, f does not have an essential singularity at z0. ■

Remark 8.1 The Great Picard’s theorem states that however small a neighbourhood of an essential singularity
we take, the image of our holomorphic function will be all of C except possibly one point.

8.4 Laurent series 1

Given a holomorphic function f : Br(z0) \ {z0} → C, we can’t write down a power series expansion for f about z0
as in Taylor’s theorem. Consider for example the function f(z) = 1/z on D \ {0}. However, we can write down a
double-ended power series expansion ∑

k∈Z

akz
k,

if we allow k to be negative.

Definition 8.4 A double-ended power series
∑
k∈Z akz

k is said to converge to ℓ ∈ C if
∑∞
k=0 ak converges to

ℓ+,
∑∞
k=1 a−k converges to ℓ−, and ℓ = ℓ+ + ℓ−.

This allows us to makes sense of the double-ended power series
∑
k∈Z akz

k and highlights that we are really considering
two normal power series. The first is f+(z) =

∑∞
k=0 akz

k and the second is f−(z) =
∑∞
k=1 a−kz−k. We can see that

they both converge on the annulus 1/R− < |z| < R+.

25
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8.5 Cauchy’s integral formula for annuli

Theorem 8.4 (Cauchy’s integral formula for annuli) Suppose Ω ⊂ C is open and f : Ω → C is holomorphic. If
Ω contains the closure of an annulus

A = {z ∈ C : R1 < |z| < R2}, (8.5.1)

then for any w ∈ A we have
f(w) = 1

2πi

∫
∂A

f(z)
z − w

dz. (8.5.2)

Corollary 8.1 (Corollary of Riemann’s removable singularity theorem) Suppose that Ω ⊂ C is open, w ∈ Ω and
f : Ω → C is holomorphic. Then the function

z 7→ f(z) − f(w)
z − w

,

is holomorphic on Ω \ {w} and has a removable singularity at w, i.e. it extends to a holomorphic function on Ω.

Proof The function is clearly holomorphic on Ω \ {w}, and by applying Riemann’s removable singularity
theorem on a ball around w, we are done. ■

Proof of Cauchy’s integral formula on annuli Fix w ∈ A. Plugging our function z 7→ f(z)−f(w)
z−w into

Cauchy’s theorem for annuli gives∫
∂A

f(z) − f(w)
z − w

dz = 0,

and so∫
∂A

f(z)
z − w

dz =
∫
∂A

f(w)
z − w

= f(w)
(∫

∂BR2 (a)

dz

z − w
−
∫
∂BR1 (a)

dz

z − w

)
= 2πif(w) (I (∂BR2(a), w) − I (∂BR1(a), w))
= 2πif(w),

w
a

∂BR2(a)
∂BR1(a)

where we use the notation ∂BR(a) to refer to the curve t 7→ a+ Reit for t ∈ [0, 2π]. The winding numbers are
evident from the sketch. ■

8.6 Laurent series 2

Theorem 8.5 (Laurent’s theorem) Suppose 0 ⩽ r1 < r2, a ∈ C and f is holomorphic on the annulus
A = {z ∈ C : r1 < |z − a| < r2}. Then there exist unique coefficients ak ∈ C for k ∈ Z such that the
double-ended power series

∑
k∈Z ak(z− a)k converges to f(z) for all z ∈ A. Moreover, the coefficients are given

by
ak = 1

2πi

∫
∂Br(a)

f(w)
(w − a)k+1 dw, (8.6.1)

for any r ∈ (r1, r2).

Proof WLOG. a = 0. Fix z ∈ A, then choose R1, R2 such that r1 < R1 < |z| < R2 < r2. By Cauchy’s
theorem for annuli

ak = 1
2πi

∫
∂BR1 (0)

f(w)
wk+1 dw = 1

2πi

∫
∂BR2 (0)

f(w)
wk+1 dw.

Cauchy’s integral formula for annuli implies

f(z) = 1
2πi

∫
∂BR2 (0)

f(w)
w − z

dw − 1
2πi

∫
∂BR1 (0)

f(w)
w − z

dw.
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The first integral can be handled as in the proof of Taylor’s theorem, giving

1
2πi

∫
∂BR2 (0)

f(w)
w − z

dw =
∞∑
k=0

1
2πi

∫
∂BR2 (0)

f(w)
wk+1 dwz

k =
∞∑
k=0

akz
k.

For the second integral, we can write

1
w − z

= 1
z

[
1

1 − w/z

]
= 1
z

∞∑
k=0

(w
z

)k
,

for any w ∈ ∂BR1(0) which converges since |w| < |z|. Hence,

1
2πi

∫
∂BR1 (0)

f(w)
w − z

dw = 1
2πi

∫
∂BR1 (0)

∞∑
k=0

f(w)
wk+1 dwz

k

=
−1∑

k=−∞

(
1

2πi

∫
∂BR1 (0)

f(w)
wk+1 dw

)
zk

=
−1∑

k=−∞
akz

k.

■

Example 8.4 The function f(z) = 1
1−z is holomorphic on the disc D and on the annulus C \ D. On D we

have the Taylor series f(z) =
∑∞
k=0 z

k, and on C \D we instead have the Laurent series

1
1 − z

= −1
z

∞∑
k=0

(
1
z

)k
=

−1∑
k=−∞

(−1)zk.

8.7 Classification of isolated singularities using Laurent series

Suppose f : D \ {0} → C is holomorphic with Laurent series f(z) =
∑
k∈Z akz

k on D \ {0}. We define the order of f
at some point a to be

ord(f, a) := inf{n ∈ Z : an ̸= 0}.

Let a = 0, if

(1) ord(f, 0) ⩾ 0 then the Laurent series is a Taylor series, giving a holomorphic function on the whole of D. Hence,
f has a removable singularity at 0.

(2) ord(f, 0) < 0 and ord(f, 0) ̸= −∞ iff. f has a pole at 0. In this case, ord(f, 0) = −n.

(3) ord(f, 0) = −∞ iff. f has an essential singularity at 0.

Note If f is identically zero then we define ord(f, 0) = ∞.

8.8 Classification of injective entire functions

Theorem 8.6 (Injective entire functions are linear) Suppose that f : C → C is holomorphic and injective. Then
f is linear, i.e. f(z) = αz + β for some α, β ∈ C with a ̸= 0.

Proof Define g : C \ {0} → C defined by g(z) = f(1/z) is clearly holomorphic and injective by composition.

We claim that g has a pole at 0. If the isolated singularity at 0 were removable then g would be bounded on
some neighbourhood of 0, say D \ {0}, and hence f would be bounded on some neighbourhood of ∞, say C \D.
But f is continuous and thus bounded on D, so f would be bounded on C. By Liouville’s theorem, f would be
constant, contradicting the injectivity of f .

If g had an essential singularity at 0, then by the Casorati-Weierstrass theorem, g(D \ {0}) would be dense in
C. This implies that f(C \ D) is dense in C. But f(D) is an open set by the open mapping theorem, and so
there must be some intersection of f(C \D) and f(D), which contradicts the injectivity of f .
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If we Taylor expand f about 0 we get

f(z) =
∞∑
k=0

akz
k,

then the Laurent series of g about 0 is

g(z) =
0∑

k=−∞
akz

k.

Since g has a pole at 0, we must have ak = 0 for all k > n. Thus, f is a polynomial.

The Fundamental theorem of algebra implies that f is a polynomial of degree at most 1, i.e. f(z) = αz + β. ■

9 The general form of Cauchy’s theorem

9.1 Chains and cycles

Suppose Ω ⊂ C is open and f : Ω → C is a continuous function. Given two piecewise C1 curves γ1 : [a, b] → Ω and
γ2 : [a′, b′] → Ω, we can make formal definition∫

γ1+γ2

f(z)dz =
∫
γ1

f(z)dz +
∫
γ2

f(z)dz.

More generally, given a finite collection of piecewise C1 curves γ1, . . . , γn and weights α1, . . . , αn ∈ Z, we can consider
the formal linear combination

γ := α1γ1 + · · · + αnγn : [a, b] → Ω

and define the integral ∫
γ

f(z)dz :=
n∑
k=1

αk

∫
γk

f(z)dz.

Loosely speaking, we can think of γ as a chain. A cycle is, strictly speaking, one of these chains that can be
represented in terms of curves γ1, . . . , γn that are each closed curves. This allows us to define the winding number as

I(γ,w) :=
n∑
k=1

αkI(γk, w).

Definition 9.1 Let Ω ⊂ C be open. A cycle γ in Ω is homologous to zero in Ω if for any a ∈ C \ Ω we have

I(γ, a) = 0.

Example 9.1 Let γ1, γ2 : [0, 2π] → Ω := C{0} be the curves given by γ1(θ) = eiθ and γ2(θ) = 2eiθ. Then the
cycle γ = γ1 − γ2 is homologous to zero in Ω but the individual curves γ1 and γ2 are not.

9.2 The homological version of Cauchy’s theorem

Theorem 9.1 (Cauchy’s theorem - homological version) Let Ω ⊂ C be open and f : Ω → C holomorphic. For
any cycle γ that is homologous to zero in Ω we have∫

γ

f(z)dz = 0.

If γ isn’t homologous to zero, then there exists some a ∈ C \ Ω such that I(γ, a) ̸= 0, and we can define a holomorphic
function f : Ω → C by f(z) = 1

z−a , giving

∫
γ

f(z)dz =
∫
γ

dz

z − a
= I(γ, a) ̸= 0.
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Ωδ

γ

Sketch of the proof for the homological version of Cauchy’s theorem.

Proof WLOG. we may assume that Ω is bounded. By compactness, we may define

2δ := inf{|x− y| : x ∈ γ, y ∈ ∂Ω} > 0.

We would like to shrink Ω to a smaller domain Ωδ such that ∂Ωδ ⊂ Ω is a piecewise C1 curve on which f is
defined. This motivates the following.

Consider a grid of squares with width δ on C

G := {[x, x+ δ] × [iy, i(y + δ)] : x, y ∈ Z}.

Denote by {Qj}Jj=1 the finite collection of squares fully contained in G ∩ Ω. Define Ωδ := interior(∪Jj=1Qj), such
that ∂Ωδ ⊂ Ω is a piecewise C1 curve (see sketch).

Pick w in the interior of some Qj0 . By Cauchy’s integral formula (on squares) we have

f(w) = 1
2πi

∫
∂Qj0

f(z)
z − w

dz.

For any other square Qj we have
1

2πi

∫
∂Qj

f(z)
z − w

dz = 0

by Cauchy’s theorem on star-shaped domains. By cancellation, we have that for any w ∈ Ωδ

f(w) = 1
2πi

∫
∂Ωδ

f(z)
z − w

dz. (9.2.1)

By definition of δ, the image of γ is fully contained in Ωδ. Also, for every z ∈ C \ Ωδ, and in particular for every
z ∈ ∂Ωδ, we have

I(γ, z) = 0, (9.2.2)

as follows from Lemma 4.3 and our assumption that γ is homologous to zero. Integrating (9.2.1) over γ gives∫
γ

f(w)dw =
∫
γ

1
2πi

(∫
∂Ωδ

f(z)
z − w

dz

)
dw =

∫
∂Ωδ

f(z)
(

1
2πi

∫
γ

dw

z − w

)
dz

= −
∫
∂Ωδ

f(z)I(γ, z)dz = 0,

by (9.2.2). ■

9.3 The general version of Cauchy’s integral formula

Corollary 9.1 (Cauchy’s integral formula - general version) Let Ω ⊂ C be open and f : Ω → C holomorphic.
For any cycle γ that is homologous to zero in Ω and any w ∈ Ω with w /∈ γ we have

f(w)I(γ,w) = 1
2πi

∫
γ

f(z)
z − w

dz.
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Proof By Corollary 8.1, the function g(z) = f(z)−f(w)
z−w can be extended to a holomorphic function on Ω\{w}.

The homological version of Cauchy’s theorem we have
∫
γ
g(z)dz = 0 and hence

1
2πi

∫
γ

f(z)
z − w

dz = 1
2πi

∫
γ

f(w)
z − w

dz = f(w)I(γ,w).

■

9.4 The deformation theorem; Cauchy’s theorem on simply connected domains

If Ω is simply connected, then by Corollary 4.1 then any closed curve γ ∈ Ω has zero winding number around any
w ∈ C \ Ω. I.e. any cycle γ is homologous to zero in Ω. This implies Cauchy’s theorem on simply connected domains.

One way of constructing a closed curve γ in Ω is to start with a curve γ1 in Ω and deform it continuously to a curve
γ2 in Ω such that γ1 and γ2 have the same endpoints. This is the content of the following theorem.

Theorem 9.2 (Deformation theorem on simply connected domains) Let Ω ⊂ C be simply connected and f :
Ω → C holomorphic. If γ1, γ2 : [a, b] → Ω are two piecewise C1 curves with γ1(a) = γ2(a) and γ1(b) = γ2(b),
then ∫

γ1

f(z)dz =
∫
γ2

f(z)dz.

Lemma 9.1 Suppose Ω ⊂ C is an open set and γ1, γ2 : [a, b] → Ω are two piecewise C1 curves with γ1(a) = γ2(a)
and γ1(b) = γ2(b). Then γ1 −γ2, viewed as a closed curve, is homotopic to a constant curve iff. γ1 is homotopic
to γ2.

Proof is non-examinable.

a b

γ1

γ2

Ω

Homotopy of curves

Theorem 9.3 (Deformation theorem) Let Ω ⊂ C be open and f : Ω → C holomorphic. If γ1, γ2 : [a, b] → Ω
are two piecewise C1 curves that are homotopic, then∫

γ1

f(z)dz =
∫
γ2

f(z)dz.

Note The intermediate curves do not retain the piecewise C1 nature of γ1 and γ2, so integration along these
curves is not well-defined (with the technology we have developed).

9.5 Residue theorem

Theorem 9.4 (Residue) Suppose that f : Bδ(z0) \ {z0} → C is holomorphic, for some δ > 0, z0 ∈ C. The
residue of f at z0 is defined by

Res(f, z0) := 1
2πi

∫
∂Bε(z0)

f(z)dz, (9.5.1)

for any ε ∈ (0, δ).

Theorem 9.5 (Residue theorem) Let Ω ⊂ C be open. Suppose that f is holomorphic on Ω \ S where S is a
discrete set (isolated points) that is closed in C. Let γ be a cycle in Ω\S that is homologous to zero in Ω. Then

30



9 THE GENERAL FORM OF CAUCHY’S THEOREM

there are only finitely many a ∈ S such that I(γ, a) ̸= 0, and∫
γ

f(z)dz = 2πi
∑
a∈S

I(γ, a) Res(f, a). (9.5.2)

Proof Assume for contraction that
A := {a ∈ S : I(γ, a) ̸= 0}

is infinite. Then we can pick a sequence {an}∞
n=1 ⊂ A such that an ̸= am for n ̸= m. By boundedness of A, we

can find a subsequence {ank
}∞
k=1 such that ank

→ a∞ ∈ ∂Ω. More precisely a∞ ∈ ∂Ω /∈ Ω because otherwise it
would be an accumulation point in S which we require to be discrete. So by Lemma 4.3, I(γ, a∞) = 0 for all
a in some neighbourhood of a∞. But this contradicts the assumption that ank

∈ A for all k ∈ N. Hence, A is
finite.

We may write A = {a1, . . . , an} and choose ε > 0 such that B2ε(ak) \ {ak} ⊂ Ω \ S for all k ∈ {1, . . . , n}. Let
γk : [0, 1] → Ω \ S be the circle of radius ε centred at ak, that is

γk(θ) = ak + εe2πiθ.

Notice that I(γk, ak) = 1, and I(γk, a) = 0 for all a ∈ S \ {ak}.

Define nk := I(γ, ak) and consider the cycle

Γ = γ −
n∑
k=1

nkγk.

By construction, I(Γ, a) = 0 for all a ∈ S. Moreover, I(Γ, a) = 0 for all a ∈ C\Ω. Hence, by the general Cauchy
theorem applied on Ω \ S we have

∫
Γ f(z)dz = 0, i.e.∫

γ

f(z)dz =
n∑
k=1

nk

∫
γk

f(z)dz =
n∑
k=1

I(γ, ak) Res(f, ak).

■

9.6 Evaluation of residues

In practice, it may be hard to compute residues directly from the integral definition in (9.5.1).

Removable singularities

If f has a removable singularity at z0, then f is bounded in a neighbourhood of z0, and hence the integral in (9.5.1)
is zero.

Example 9.2 Consider f(z) = sin z
z . Then f has a removable singularity at z = 0, and Res(f, 0) = 0.

Simple poles

If f has a simple pole at z0, then by Theorem 8.2 we can write f(z) = g(z)
z−z0

for some holomorphic function g : Bδ(z0) →
C with g(z0) ̸= 0. Substituting into (9.5.1) gives

Res(f, z0) = 1
2πi

∫
∂Bε(z0)

g(z)
z − z0

dz = g(z0),

by Cauchy’s integral formula.

Example 9.3 Consider f(z) = 1
z2+1 = 1

(z−i)(z+i) , with simple poles at z0 = ±i. So Res(f,±i) = g(±i) = ± 1
2i .
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Rationals, with at worst a simple pole

If f(z) = p(z)
q(z) where p, q : Bδ(z0) → C are holomorphic functions with q(z0) = 0 but q′(z0) ̸= 0, i.e. f has a simple

pole at z0, then we can write
f(z) = g(z)

z − z0
for g(z) = p(z)(

q(z)
z−z0

) .
Then g has a removable singularity at z0, and can be extended to Bδ(z0) by setting

g(z0) = lim
z→z0

g(z) = p(z0)
q′(z0) .

Hence, by the previous case, we have
Res(f, z0) = p(z0)

q′(z0) .

Example 9.4 The residue of 1
sin z at z = 0 is 1

cos 0 = 1.

Higher order poles

If f has a pole of order n at z0, then by Theorem 8.2 we can write f(z) = g(z)
(z−z0)n for some holomorphic function

g : Bδ(z0) → C with g(z0) ̸= 0. Substituting into (9.5.1) gives

Res(f, z0) = 1
2πi

∫
∂Bε(z0)

g(z)
(z − z0)n dz = g(n−1)(z0)

(n− 1)! , (9.6.1)

by Cauchy’s integral formula. We can rewrite this in terms of f , giving

Res(f, z0) = 1
(n− 1)! lim

z→z0

dn−1

dzn−1

[
(z − z0)nf(z)

]
.

Example 9.5 Consider f(z) = 1
z2(z−1) . Then f has a pole of order 2 at z = 0 and a simple pole at z = 1.

So Res(f, 0) = 1
1! limz→0

d
dz

[
z2f(z)

]
= limz→0

d
dz

[
1
z−1

]
= −1.

Example 9.6 Res
( cos z
z3 , 0

)
= 1

2! limz→0
d2

dz2

[
z3 cos z

z3

]
= 1

2! limz→0
d2

dz2 [cos z] = − 1
2 .

Essential singularities

If f has an essential singularity at z0, then we cannot compute the residue of f at z0 directly from the integral definition
in (9.5.1). Instead, we appeal to (8.6.1) to find that

Res(f, z0) = a−1.

Example 9.7 Consider f(z) = e
1
z . Then f has an essential singularity at z = 0, and Res(f, 0) = a−1 = 1

0! = 1.

9.7 Computing real integrals using residues

We claim that
I :=

∫ 2π

0

4 sin2 θ

5 + 4 cos θdθ = π.

We can rewrite this as a complex integral over the C1 curve γ : [0, 2π] → C given by γ(θ) = eiθ, i.e.

I =
∫
γ

f(z)
iz

dz =
∫ 2π

0

f (γ(θ))
iγ(θ) γ′(θ)dθ =

∫ 2π

0
f(eiθ)dθ.
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Recalling Definition 3.2, we define z = eiθ such that the integrand becomes

f(z) =
4
(
z− 1

z

2i

)2

5 + 4
(
z+ 1

z

2

) =
−z
(
z − 1

z

)2

(2z + 1)(z + 2) ,

and thus

I =
∫
γ

F (z)dz, where F (z) =
i
(
z − 1

z

)2

(2z + 1)(z + 2) .

γ encloses a double pole at 0 and a simple pole at − 1
2 . We can compute

Res
(
F (z),−1

2

)
= 3

4 i,

by rewriting

F (z) =
[

i
(
z − 1

z

)2

2(z + 2)

]
1

z −
( 1

2
) .

If we expand brackets of the numerator as z2 + 2 + z−2 we notice that the first two terms are holomorphic near z = 0.
Therefore,

Res (F, 0) = Res
(

i
z2(2z + 1)(z + 2) , 0

)
.

We can write G(z) = g(z)
z2 for g(z) = i

(2z+1)(z+2) , and use (9.6.1) to find

Res (G, 0) = 1
2 − 1!g

′(0) = −i
4(0) + 5

((2(0) + 1)(0 + 2))2 = −5i
4 .

By the Residue theorem we have
I = 2πi

(
−5i

4 + 3i
4

)
= π.

9.8 The argument principle

Definition 9.2 A closed continuous path γ : [a, b] → C is simple if its restriction to [a, b) is injective, i.e.
γ(t1) ̸= γ(t2) for all t1, t2 ∈ [a, b) with t1 ̸= t2.

Definition 9.3 A simple closed continuous path γ : [a, b] → C bounds an open set A ⊂ C in a positive
direction if C \ γ([a, b]) has two connected components, one of which is A, and I(γ, z) = 1 for every z ∈ A.

Suppose that f : Ω → C∞ is meromorphic on Ω ⊂ C and f ̸= 0. Let P ⊂ Ω be the set of poles of f , and Z ⊂ Ω be
the set of zeros of f . Both are discrete and closed sets.

Definition Given some A ⊂ Ω, we define

ZA(f) =
∑

z∈Z∩A
ord(f, z), PA(f) =

∑
z∈P∩A

[− ord(f, z)],

i.e. the number of zeros and poles counting multiplicity.

Theorem 9.6 (Argument principle) Suppose that f : Ω → C∞ is meromorphic on Ω ⊂ C and f ̸= 0. Let
γ : [a, b] → Ω \ (P ∪ Z) be a piecewise C1 simple closed path that bounds an open set A ⊂ Ω in a positive
direction. Then

ZA(f) − PA(f) = 1
2πi

∫
γ

f ′(z)
f(z) dz. (9.8.1)

In fact, we can rewrite the integral in (9.8.1) as∫ b

a

f ′(γ(t))
f(γ(t)) γ

′(t)dt =
∫ b

a

(f ◦ γ)′(t)
f ◦ γ(t) dt =

∫
f◦γ

dz

z
.
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Corollary 9.2 (Argument principle) ZA(f) − PA(f) = I(f ◦ γ, 0). (9.8.2)

Proof Near a zero or a pole of f (at z0), we have f(z) = (z − z0)ng(z) for some n ∈ Z \ {0} and some
holomorphic function g : Bδ(z0) → C with g(z0) ̸= 0. Then

f ′(z)
f(z) = n(z − z0)n−1g(z) + (z − z0)ng′(z)

(z − z0)g(z)

= n

z − z0
+ g′(z)
g(z) .

Hence, the integrand in (9.8.1) has a simple pole at z0 with residue n. By the Residue theorem we have

Res
(
f ′(z)
f(z) , z0

)
= n = ord(f, z0).

■

9.9 Rouché’s theorem

Theorem 9.7 (Rouché’s theorem) Suppose that g,G : Ω → C are holomorphic on Ω ⊂ C and γ : [a, b] → Ω
is a piecewise C1 simple closed curve that bounds an open set A ⊂ Ω in a positive direction. If ∀z ∈ γ,
|G(z)| > |g(z)|, then G and G+ g have the same number of zeros in A.

Note Neither G nor G+ g have zeros on the image of γ.

Proof We can apply the dog walking lemma to the curves G ◦ γ and (G+ g) ◦ γ to find that

I(G ◦ γ, 0) = I((G+ g) ◦ γ, 0).

By the argument principle we have ZA(G) = ZA(G+ g). ■

Example 9.8 Show that z5 + 15z + 1 has exactly four zeros in the annulus {z ∈ C : 1 < |z| < 2}.

Proof First, we apply Rouché with Ω = C, A = B2(0), γ : [0, 2π] → C given by γ(θ) = 2eiθ, G(z) = z5, and
g(z) = 15z + 1. We have ∣∣z5∣∣ = 32 > 31 = 15|z| + 1 ⩾ |15z + 1| for all z ∈ γ.

Hence, z5 + 15z + 1 has exactly five zeros in B2(0).

Next, we apply Rouché with Ω = C, A = B1(0), γ : [0, 2π] → C given by γ(θ) = eiθ, G(z) = 15z, and
g(z) = z5 + 1. We have

|15z| = 15 > 2 = |z|5 + 1 ⩾
∣∣z5 + 1

∣∣ for all z ∈ γ.

Therefore, z5 + 15z + 1 has exactly one zero in B1(0).

We conclude that z5 + 15z + 1 has exactly four zeros in the annulus {z ∈ C : 1 < |z| < 2}. ■

10 Sequences of holomorphic functions

10.1 Weierstrass convergence theorem

Theorem 10.1 (Weierstrass convergence theorem) Let Ω ⊂ C be open and let fn : Ω → C be a sequence of
holomorphic functions converging locally uniformly to a function f : Ω → C. Then

(i) f is holomorphic,

(ii) f
(k)
n → f (k) locally uniformly ∀k ∈ N.

Recall A sequence fn converges locally uniformly to f if for every compact subset K ⊂ Ω, the conver-
gence is uniform on K, i.e. fn|K ⇒ f |K .
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Proof of (i) Since f is the local uniform limit of holomorphic functions, it is continuous. By Morera’s
theorem, it suffices to show that the integral of f around any triangle is zero. Let T be a triangle in Ω. By
Goursat’s theorem, we have ∫

∂T

f(z)dz = lim
n→∞

∫
∂T

fn(z)dz = 0.

■

Proof of (ii) Suppose K ⊂ Ω is the compact set on which we would like to show that f ′
n ⇒ f ′. Choose δ > 0

such that B2δ(z) ⊂ Ω for all z ∈ K. Define the compact set

Kδ :=
⋃
z∈K

Bδ(z).

By the Cauchy integral formula, for all z ∈ K and k ∈ N, we have

f (k)
n (z) − f (k)(z) = k!

2πi

∫
∂Bδ(z)

fn(w) − f(w)
(w − z)k+1 dw,

and so by (3.4.1), we have

|f (k)
n (z) − f (k)(z)| ⩽ k!

2π (2πδ) sup
w∈∂Bδ(z)

|fn(w) − f(w)|
δk+1 ⩽

k!
δk

sup
w∈∂Kδ

|fn(w) − f(w)|.

Since fn → f locally uniformly on Kδ, we have that f (k)
n → f (k) locally uniformly on K. ■

10.2 Hurwitz’s theorem

Theorem 10.2 (Hurwitz’s theorem) Let Ω ⊂ C be open and connected, and let fn : Ω → C be a sequence of
holomorphic functions converging locally uniformly to a holomorphic function f : Ω → C. If for some k ∈ N0,
none of the functions fn has more than k zeros (counting multiplicities), then either f has at most k zeros or
f ≡ 0.

Proof Assume for contradiction that f has more than k zeros, without being identically zero. Theorem 7.2
tells us that all zeros of f must be if finite order. Let z1, . . . , zK be the (isolated) zeros of f with multiplicities
m1, . . . ,mK , such that

∑K
j=1 mj > k.

We can choose δ > 0 such that the K closed balls Bδ(zj) are pairwise disjoint and contained in Ω, with no zeros
in any Bδ(zj) \ {zj}. Let

Σ :=
K⋃
j=1

∂Bδ(zj).

By compactness of Σ and continuity of |f |, we can define

ε := max
z∈Σ

|f(z)| > 0.

Since fn → f locally uniformly, we can choose N ∈ N such that |fn(z) − f(z)| < ε for all z ∈ Σ and n ⩾ N .
Rouché’s theorem implies that fn has exactly mj zeros in Bδ(zj) for all n ⩾ N , such that

∑K
j=1 mj > k, which

is a contradiction. ■

Corollary 10.1 Any function f : Ω → C that is the local uniform limit of injective holomorphic functions
fn : Ω → C, is either injective or constant.

Proof Suppose that f is neither injective nor constant. Then there exist z1 ̸= z2 such that f(z1) = f(z2) := w.

For each n ∈ N, the function fn(z) − w has at most one zero, by injectivity of fn. Since f is not constant,
f(z) − w ̸= 0. Hurwitz’s theorem implies that f(z) − w has at most one zero, which is a contradiction. ■
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10.3 Compactness: Montel’s theorem

Definition 10.1 Let Ω ⊂ C be open. A sequence of functions fn : Ω → C is locally uniformly bounded if
for all compact K ⊂ Ω, there exists M < ∞ such that |fn(z)| ⩽M for all z ∈ K and n ∈ N.

Definition 10.2 Let K ⊂ C be compact. A sequence of functions fn : K → C is uniformly equicontinuous
if for all ε > 0, there exists δ > 0 such that |z − w| < δ implies |fn(z) − fn(w)| < ε for all n ∈ N.

Theorem 10.3 (Ascoli-Arzelà’s theorem) Let K ⊂ C be compact. A sequence of functions fn : K → C is
uniformly equicontinuous and uniformly bounded, then a subsequence converges uniformly to a continuous
function f : K → C.

Theorem 10.4 (Montel’s theorem) Let Ω ⊂ C be open. Every locally uniformly bounded sequence of holo-
morphic functions fn : Ω → C has a locally uniformly convergent subsequence.

Proof For each k ∈ N, let Kk ⊂ Ω be the compact set Bk(0) ∩ Ω, such that B2−k (z) ⊂ Ω for all z ∈ Kk. This
is a sequence of compact sets such that Kk ⊂ Kk+1 for all k ∈ N, and

⋃
k∈NKk = Ω.

Fix k ∈ N. We want to show that the sequence fn|Kk
is uniformly equicontinuous. Let ε > 0. By local uniform

boundedness, there exists M < ∞ such that |fn(z)| ⩽ M for all z ∈ Kk and n ∈ N. By equicontinuity, there
exists δ > 0 such that |z − w| < δ implies |fn(z) − fn(w)| < ε for all n ∈ N.

We appeal to the uniform boundedness on Kk+1 to find M < ∞ such that |fn(z)| ⩽ M for all z ∈ Kk+1 and
n ∈ N. Define η := 2−k−1 and let z1, z2 ∈ Kk such that |z1 − z2| < η

2 . Hence, B2η(z1) ⊂ Ω and Bη(z1) ⊂ Kk+1.
In particular, |fn(w)| < M for all w ∈ Bη(z1) and n ∈ N.

Cauchy’s integral formula tells us that for any n, we have

fn(z1) − fn(z2) = 1
2πi

∫
∂Bη(z1)

fn(w)
w − z1

dw − 1
2πi

∫
∂Bη(z1)

fn(w)
w − z2

dw

= z1 − z2
2πi

∫
∂Bη(z1)

fn(w)
(w − z1)(w − z2)dw.

For w ∈ ∂Bη(z1), we have |w − z1| = η and |w − z2| ⩾ |w − z1| − |z1 − z2| ⩾ η
2 , and so∣∣∣∣ 1

(w − z1)(w − z2)

∣∣∣∣ ⩽ 2
η2 .

Therefore, by (3.4.1), we have

|fn(z1) − fn(z2)| ⩽ |z1 − z2|
2π (2πη)2M

η2 = |z1 − z2|M2k+2.

Hence, the sequence fn|Kk
is uniformly equicontinuous. By Ascoli-Arzelà’s theorem, we can extract a subse-

quence fnj
|Kk

that converges uniformly on Kk. We can repeat this process for all k ∈ N to obtain a subsequence
that converges locally uniformly on any compact set K ⊂ Kk ⊂ Ω, for large enough k. ■

11 The Riemann mapping theorem

11.1 Statement and final ingredients

Theorem 11.1 (Riemann mapping theorem) Let Ω ⊂ C be a simply connected open set that is not all of C.
Then Ω is conformally equivalent to the unit disk D, i.e. there exists a biholomorphic function f : D → Ω.

We generalise Corollary 7.1 in the following lemma.

Lemma 11.1 Let Ω ⊂ C be a simply connected open set and let g : Ω → C \ {0} be holomorphic. Then there
exists a holomorphic function ℓ : Ω → C such that g(z) = eℓ(z) for all z ∈ Ω.

Furthermore, for all k ∈ N, the function ψ(z) := e
1
k ℓ(z) is a holomorphic kth root of g(z), i.e. ψk(z) = g(z) for

all z ∈ Ω. If g is injective, then ψ is injective.
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Remark 11.1 If Ω ⊂ C \ {0} is simply connected, then we can take g(z) = z and ℓ(z) = log z, giving a
well-defined holomorphic function log : Ω → C.

Proof of Lemma 11.1 By Lemma 7.1 it suffices to find an anti-derivative F (z) of the function f(z) := g′(z)
g(z) .

Fix z0 ∈ Ω and let γ be a piecewise C1 curve in Ω from z0 to any other point z. Define

F (z) :=
∫
γ

f(w)dw.

By the Deformation theorem, this definition is independent of the choice of γ, and so F is well-defined. To see
that F is holomorphic and satisfies F ′(z) = f(z), we write

F (z + h) = F (z) +
∫

[z,z+h]
f(w)dw.

Differentiating with respect to h and evaluating at h = 0 gives F ′(z) = f(z), by Corollary 5.1.

If ψ(z1) = ψ(z2) for some z1, z2 ∈ Ω, then taking the kth power of both sides gives g(z1) = g(z2). Hence,
injectivity of g implies injectivity of ψ. ■

11.2 Proof of the Riemann mapping theorem

To be done.
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